Vol. 84

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-06-02

A Miniaturized Decagonal Sierpinski UWB Fractal Antenna

By Tanweer Ali, Subhash B K, and Rajashekhar C. Biradar
Progress In Electromagnetics Research C, Vol. 84, 161-174, 2018
doi:10.2528/PIERC18040605

Abstract

A miniaturized ultra-wideband (UWB) antenna based on Sierpinski square slots is reported. The antenna has a compact dimension of only 0.32λl×0.32λl (28×28 mm2), at a lower frequency of 3.4 GHz. Antenna miniaturization is achieved by etching Sierpinski square slots in the radiating decagonal shaped monopole, and UWB operations are accomplished by utilizing double truncations in the ground plane. The designed antenna has a fractional bandwidth of about 127.3% (3.41-15.37 GHz) in simulation and about 124.7% (3.50-15.1 GHz) in measurement. The time domain characteristics of the designed antenna are discussed in detail. Good radiation characteristics and impedance matching are exhibited by the designed fractal antenna in the entire UWB range.

Citation


Tanweer Ali, Subhash B K, and Rajashekhar C. Biradar, "A Miniaturized Decagonal Sierpinski UWB Fractal Antenna," Progress In Electromagnetics Research C, Vol. 84, 161-174, 2018.
doi:10.2528/PIERC18040605
http://jpier.org/PIERC/pier.php?paper=18040605

References


    1. Ali, T, A. M. Saadh, R. C. Biradar, J. Anguera, and A. Andujar, "A miniaturized metamaterial slot antenna for wireless applications," AEU-International Journal of Electronics and Communications, Vol. 82, 368-382, 2017.
    doi:10.1016/j.aeue.2017.10.005

    2. Ali, T., M. M. Khaleeq, S. Pathan, and R. C. Biradar, "A multiband antenna loaded with metamaterial and slots for GPS/WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 60, No. 1, 79-85, 2018.
    doi:10.1002/mop.30921

    3. Ali, T., S. Pathan, and R. C. Biradar, "Multiband, frequency reconfigurable and metamaterial antennas design techniques-present and future research directions," Internet Technology Letters, 2017, doi-10.1002/itl2.19.

    4. Ali, T., M. M. Khaleeq, and R. C. Biradar, "A multiband reconfigurable slot antenna for wireless applications," AEU-International Journal of Electronics and Communications, Vol. 84, 273-280, 2018.
    doi:10.1016/j.aeue.2017.11.033

    5. Ali, T. and R. C. Biradar, "A compact hexagonal slot dual band frequency reconfigurable antenna for WLAN applications," Microwave and Optical Technology Letters, Vol. 59, No. 4, 958-964, 2017.
    doi:10.1002/mop.30443

    6. Kunwar, A., A. K. Gautam, and K. Rambabu, "Design of a compact U-shaped slot triple band antenna for WLAN/WiMAX applications," AEU-International Journal of Electronics and Communications, Vol. 71, 82-88, 2017.
    doi:10.1016/j.aeue.2016.10.013

    7. Anguera, J., C. Puente, C. Borja, and J. Soler, Fractal Shaped Antennas: A Review, Encyclopedia of RF and Microwave Engineering, 2005.

    8. Apaydin, N., K. Sertel, and J. L. Volakis, "Nonreciprocal and magnetically scanned leaky-wave antenna using coupled CRLH lines ," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 2954-2961, 2014.
    doi:10.1109/TAP.2014.2314308

    9. Ali, T., A. W. Mohammad Saadh, S. Pathan, and R. C. Biradar, "A miniaturized circularly polarized coaxial fed superstrate slot antenna for L-band application," Internet Technology Letters, 2017, doi: 10.1002/itl2.21.

    10. Ali, T. and R. C. Biradar, "A triple-band highly miniaturized antenna for WiMAX/WLAN applications," Microwave and Optical Technology Letters, Vol. 60, No. 2, 466-471, 2018.
    doi:10.1002/mop.30993

    11. Reddy, B. R. and D. Vakula, "Size miniaturization of slit-based circular patch antenna with defected ground structure," Microwave and Optical Technology Letters, Vol. 57, No. 10, 2410-2413, 2015.
    doi:10.1002/mop.29337

    12. Ali, T. and R. C. Biradar, "A miniaturized Volkswagen logo UWB antenna with slotted ground structure and metamaterial for GPS, WiMAX and WLAN applications," Progress In Electromagnetics Research C, Vol. 72, 29-41, 2017.
    doi:10.2528/PIERC16120109

    13. Tang, M. C., T. Shi, and R. W. Ziolkowski, "Planar ultrawideband antennas with improved realized gain performance," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 61-69, 2016.
    doi:10.1109/TAP.2015.2503732

    14. Ershadh, M., "Study of the design evolution of an antenna and its performance for UWB communications," Microwave and Optical Technology Letters, Vol. 57, No. 1, 81-84, 2015.
    doi:10.1002/mop.28777

    15. Shokri, M., V. Rafii, S. Karamzadeh, Z. Amiri, and B. Virdee, "Miniaturised ultra-wideband circularly polarised antenna with modified ground plane," Electronics Letters, Vol. 50, No. 24, 1786-1788, 2014.
    doi:10.1049/el.2014.3278

    16. Baliarda, C. P., E. J. L. Rozan, and J. A. Pros, , U.S. Patent No. 7,202,822, U.S. Patent and Trademark Office, Washington, DC, 2007.

    17. Anguera, J., C. Puente, E. Martinez, and E. Rozan, "The fractal Hilbert monopole: A two-dimensional wire," Microwave and Optical Technology Letters, Vol. 36, No. 2, 102-104, 2003.
    doi:10.1002/mop.10687

    18. Anguera, J., J. P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, and P. Van Roy, "Metallized foams for antenna design: Application to fractal-shaped sierpinski-carpet monopole," Progress In Electromagnetics Research, Vol. 104, 239-251, 2010.
    doi:10.2528/PIER10032003

    19. Ding, M., R. Jin, J. Geng, and Q. Wu, "Design of a CPW-fed ultrawideband fractal antenna," Microwave and Optical Technology Letters, Vol. 49, No. 1, 173-176, 2007.
    doi:10.1002/mop.22078

    20. Saraswat, R. K., A. K. Chaturvedi, and V. Sharma, "Slotted ground miniaturized UWB antenna metamaterial inspired for WLAN and WiMAX applications," 2016 8th International Conference on Computational Intelligence and Communication Networks (CICN), 213-216, IEEE, 2016.

    21. Ghanbari, L., S. Nikmehr, and M. Rezvani, "A novel small UWB antenna using new fractal-like geometry," IEEE Applied Electromagnetics Conference (AEMC), 1-4, 2011.

    22. Tripathi, S., A. Mohan, and S. Yadav, "Hexagonal fractal ultra-wideband antenna using Koch geometry with bandwidth enhancement," IET Microwaves, Antennas & Propagation, Vol. 8, No. 15, 1445-1450, 2014.
    doi:10.1049/iet-map.2014.0326

    23. Wiesbeck, W., G. Adamiuk, and C. Sturm, "Basic properties and design principles of UWB antennas," Proceedings of the IEEE, Vol. 97, No. 2, 372-385, 2009.
    doi:10.1109/JPROC.2008.2008838

    24. Singhal, S. and A. K. Singh, "CPW-fed hexagonal Sierpinski super wideband fractal antenna," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1701-1707, 2016.
    doi:10.1049/iet-map.2016.0154

    25. Zhang, H. T., G. Q. Luo, B. Yuan, and X. H. Zhang, "A novel ultra-wideband metamaterial antenna using chessboard-shaped patch," Microwave and Optical Technology Letters, Vol. 58, No. 12, 3008-3012, 2016.
    doi:10.1002/mop.30200

    26. Mohammad, S. A., M. M. Khaleeq, T. Ali, and R. C. Biradar, "A miniaturized truncated ground plane concentric ring shaped UWB antenna for wireless applications," 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 116-120, IEEE, 2017.

    27. Islam, M. T., M. Samsuzzaman, M. N. Rahman, and M. T. Islam, "Miniaturized UWB antenna with excellent frequency ratio and bandwidth enhancement for wireless applications," 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), 80-83, IEEE, 2017.
    doi:10.1109/ICAEE.2017.8255331

    28. Hossain, M. J., M. R. I. Faruque, M. M. Islam, M. T. Islam, and M. A. Rahman, "Bird face microstrip printed monopole antenna design for ultra wide band applications," Frequenz, Vol. 70, No. 11-12, 473-478, 2016.
    doi:10.1515/freq-2016-0113

    29. Ezuma, M. C., S. Subedi, and J. Y. Pyun, "Design of a compact UWB antenna for multi-band wireless applications," 2015 International Conference on Information Networking (ICOIN), 456-461, IEEE, 2015.
    doi:10.1109/ICOIN.2015.7057945

    30. Nada, A. M. and A. M. Allam, "UWB antenna for Wi-Fi and radar applications," Int. J. Computer Info. Tech., Vol. 3, No. 5, 1033-1036, 2014.