Vol. 84

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-06-14

CPW-Fed Body Worn Monopole Antenna on Magneto-Dielectric Substrate in C-Band

By Pragyan Jyoti Gogoi, Satyajib Bhattacharyya, and Nidhi S. Bhattacharya
Progress In Electromagnetics Research C, Vol. 84, 201-213, 2018
doi:10.2528/PIERC18040604

Abstract

Body worn antennas generally face the problem of isolation when operated in close proximity to human body. Use of magneto-dielectric material as substrate for antenna makes the system compact and reduces the influence of body on performance of antenna. In addition, miniaturization of antenna size also takes place. 7 wt.% of nano-sized Ni0.5Zn0.5 Fe2O4 is dispersed as magnetic filler in flexible linear low density polyethylene matrix. Beyond 7 wt.%, the sample stiffens and loses flexibility because of percolation limit of the polymer. Verification of the composite as a potential substrate for a body worn antenna is carried out by fabricating a coplanar waveguide fed simple rectangular monopole antenna, using transmission line model at 6 GHz. Antenna performance is studied by wearing the patch on human wrist. S11 of -21.78 dB at 5.32 GHz and -10 dB bandwidth of 49.62% is observed. For comparison, an antenna at the same resonant frequency is developed on linear low density polyethylene with magnetic inclusions. The antenna on magneto-dielectric substrate shows better performance than dielectric substrate. The magnetic and dielectric properties of the Nickel Zinc Ferrite-linear low density polyethylene composite magneto-dielectric substrate reduces the influence of the human body which makes the antenna system compact and robust as additional techniques are not required for shielding of human body influence on antenna performance.

Citation


Pragyan Jyoti Gogoi, Satyajib Bhattacharyya, and Nidhi S. Bhattacharya, "CPW-Fed Body Worn Monopole Antenna on Magneto-Dielectric Substrate in C-Band," Progress In Electromagnetics Research C, Vol. 84, 201-213, 2018.
doi:10.2528/PIERC18040604
http://jpier.org/PIERC/pier.php?paper=18040604

References


    1. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications, 151-188, Artech House, London, 2012.

    2. Cibin, C., P. Leuchtmann, M. Gimersky, R. Vahldieck, and S. Moscibroda, "A flexible wearable antenna," Antennas and Propagation Society International Symposium, Vol. 4, 3589-3592, IEEE, June 2004.

    3. Kang, C. H., S. J. Wu, and J. H. Tarng, "A novel folded UWB antenna for wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1139-1142, 2012.
    doi:10.1109/TAP.2011.2173101

    4. Conway, G. A. and W. G. Scanlon, "Antennas for over-body-surface communication at 2.45 GHz," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 844-855, 2009.
    doi:10.1109/TAP.2009.2014525

    5. Klemm, M., I. Z. Kovcs, G. F. Pedersen, and G. Troster, "Novel small-size directional antenna for UWB WBAN/WPAN applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 12, 3884-3896, 2005.
    doi:10.1109/TAP.2005.859906

    6. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and techniques, Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    7. Yablonovitch, E. and D. Sievenpiper, Circuit and Method for Eliminating Surface Currents on Metals, U.S. Patent No. 6,262,495 B1, July 17, 2001.

    8. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 926-935, 2009.
    doi:10.1109/TAP.2009.2014527

    9. Klemm, M., I. Z. Kovcs, G. F. Pedersen, and G. Troster, "Novel small-size directional antenna for UWB WBAN/WPAN applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 12, 3884-3896, 2005.
    doi:10.1109/TAP.2005.859906

    10. Yarovoy, A. G., R. Pugliese, J. H. Zijderveld, and L. P. Ligthart, "Antenna development for UWB impulse radio," IEEE 34th European Microwave Conference, 1257-1260, Amsterdam, The Netherlands, 2004.

    11. Alves, T., R. Augustine, P. Queffelec, M. Grzeskowiak, B. Poussot, and J. M. Laheurte, "Polymeric ferrite-loaded antennas for on-body communications," Microwave Opt. Technol. Lett., Vol. 51, No. 11, 2530-2533, 2009.
    doi:10.1002/mop.24669

    12. Mosallaei, H. and K. Sarabandi, "Magneto-dielectrics in electromagnetics: Concept and applications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1558-1567, 2004.
    doi:10.1109/TAP.2004.829413

    13. Borah, K. and N. S. Bhattacharyya, "Magnetodielectric composite with NiFe2O4 inclusions as substrates for microstrip antennas," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, No. 5, 1825-1832, 2012.
    doi:10.1109/TDEI.2012.6311533

    14. Kong, L. B., Z. W. Li, G. Q. Lin, and Y. B. Gan, "Ni-Zn ferrites composites with almost equal values of permeability and permittivity for low-frequency antenna design," IEEE Transactions on Magnetics, Vol. 43, No. 1, 6-10, 2007.
    doi:10.1109/TMAG.2006.886321

    15. Su, H., X. Tang, H. Zhang, Y. Jing, and F. Bai, "Low-loss magneto-dielectric materials: Approaches and developments," Journal of Electronic Materials, Vol. 43, No. 2, 299, 2014.
    doi:10.1007/s11664-013-2831-5

    16. Souriou, D., J. L.Mattei, A. Chevalier, and P. Queffelec, "Influential parameters on electromagnetic properties of nickel-zinc ferrites for antenna miniaturization," Journal of Applied Physics, Vol. 107, No. 9, 09A518, 2010.
    doi:10.1063/1.3356235

    17. Mattei, J. L., E. Le Guen, and A. Chevalier, "Dense and half-dense NiZnCo ferrite ceramics: Their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies," J. Appl. Phys., Vol. 117, 084904, 2015.
    doi:10.1063/1.4913700

    18. Fechine, P. B. A., A. F. L. Almeida, R. S. Oliveir, R. S. T. Moretzsohn, and A. S. B. Sombra, "Bulk and patch ferrite resonator antennas based on the ceramic matrix composite: GdIGx YIG1−x," Microwave Opti. Techno. Lett., Vol. 51, No. 6, 1595-1602, 2009.
    doi:10.1002/mop.24395

    19. Pardavi-Horvath, M., "Microwave applications of soft ferrites," J. Magne. Magne. Mater., Vol. 215, 171-183, 2000.
    doi:10.1016/S0304-8853(00)00106-2

    20. Kotnala, R. K., S. Ahmad, A. S. Ahmed, J. Shah, and A. Azam, "Investigation of structural, dielectric, and magnetic properties of hard and soft mixed ferrite composites," J. Appl. Phys., Vol. 112, 054323, 2012.
    doi:10.1063/1.4752030

    21. Ikonen, P. M., K. N. Rozanov, A. V. Osipov, P. Alitalo, and S. A. Tretyakov, "Magnetodielectric substrates in antenna miniaturization: Potential and limitations," IEEE Transactions on Antennas and Propagation, Vol. 54, 3391-3399, 2006.
    doi:10.1109/TAP.2006.884303

    22. Ikonen, P. and S. Tretyakov, "On the advantages of magnetic materials in microstrip antenna miniaturization," Microwave Opti. Techno. Lett., Vol. 50, 3131-3134, 2008.
    doi:10.1002/mop.23931

    23. Martin, L. J., S. Ooi, D. Staiculescu, M. D. Hill, C. P. Wong, and M. M. Tentzeris, "Effect of permittivity and permeability of a flexible magnetic composite material on the performance and miniaturization capability of planar antennas for RFID and wearable wireless applications," IEEE Trans. Compo. Packag. Techno., Vol. 32, 849-858, 2009.
    doi:10.1109/TCAPT.2009.2032767

    24. Namin, F., T. G. Spence, D. H. Werner, and E. Semouchkina, "Broadband, miniaturized stacked-patch antennas for L-band operation based on magneto-dielectric substrates," IEEE Transactions on Antennas and Propagation, Vol. 58, 2817-2822, 2010.
    doi:10.1109/TAP.2010.2052574

    25. Altunyurt, N., M. Swaminathan, P. M. Raj, and V. Nair, "Antenna miniaturization using magneto-dielectric substrates," 59th Electronic Components and Technology Conference, IEEE ECTC, 801-808, San Diego, CA, May 2009.

    26. Xia, Q., H. Su, T. Zhang, J. Li, G. Shen, H. Zhang, and X. Tang, "Miniaturized terrestrial digital media broadcasting antenna based on low loss magneto-dielectric materials for mobile handset applications," J. Appl. Phys., Vol. 112, 043915, 2012.
    doi:10.1063/1.4748175

    27. Peng, Y., B. F. Rahman, X. Wang, and G. Wang, "Engineered smart substrate with embedded patterned permalloy thin film for radio frequency applications," J. Appl. Phys., Vol. 115, 17A505, 2014.
    doi:10.1063/1.4861203

    28. Parsons, P., K. Duncan, A. K. Giri, J. Q. Xiao, and S. P. Karna, "Electromagnetic properties of NiZn ferrite nanoparticles and their polymer composites," J. Appl. Phys., Vol. 115, 173905, 2014.
    doi:10.1063/1.4873235

    29. Mathew, D. S. and R. S. Juang, "An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in micro emulsions," Chemical Engine. J., Vol. 129, 51-65, 2007.
    doi:10.1016/j.cej.2006.11.001

    30. Uskokovic, V., M. Drofenik, and I. Ban, "The characterization of nanosized nickel-zinc ferrites synthesized within reverse micelles of CTAB/1–hexanol/water microemulsion," J. Magne. Magne. Mater., Vol. 284, 294-302, 2004.
    doi:10.1016/j.jmmm.2004.06.051

    31. Li, Y. J., M. Xu, J. Q. Feng, and Z. M. Dang, "Dielectric behavior of a metal-polymer composite with low percolation threshold," Appl. Phys. Lett., Vol. 89, 072902, 2006.
    doi:10.1063/1.2337157

    32. Aksun, M. I., S. L. Chuang, and Y. T. Lo, "Coplanar waveguide-fed microstrip antennas," Microwave Opt. Technol. Lett., Vol. 4, No. 8, 292-295, 1991.
    doi:10.1002/mop.4650040804

    33. Deng, S. M., M. D. Wu, and P. Hsu, "Analysis of coplanar waveguide-fed microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 7, 734-737, 1995.
    doi:10.1109/8.391149

    34. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, John Wiley & Sons, New York, 2004.

    35. Joseph, S., B. Paul, S. Mridula, and P. Mohanan, "CPW-fed UWB compact antenna for multiband applications," Progress In Electromagnetics Research C, Vol. 56, 29-38, 2015.
    doi:10.2528/PIERC14112401

    36. Psychoudakis, D. and J. L. Volakis, "Conformal asymmetric meandered flare (AMF) antenna for body-worn applications," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 931-934, 2009.
    doi:10.1109/LAWP.2009.2028662

    37. Alomainy, A., A. Sani, A. Rahman, J. G. Santas, and Y. Hao, "Transient characteristics of wearable antennas and radio propagation channels for ultrawideband body-centric wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 57, 875-884, 2009.
    doi:10.1109/TAP.2009.2014588

    38. Deng, S. M., M. D. Wu, and P. Hsu, "Analysis of coplanar waveguide-fed microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 43, 734-737, 1995.
    doi:10.1109/8.391149

    39. Kormanyos, B. K., W. Harokopus, Jr., L. P. Katehi, and G. M. Rebeiz, "CPW-fed active slot antennas," IEEE Trans. Microwave Theory Techniq., Vol. 42, 541-545, 1994.
    doi:10.1109/22.285057

    40. Parkash, D. and R. Khanna, "Design and development of CPW-fed microstrip antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research C, Vol. 17, 17-27, 2010.
    doi:10.2528/PIERC10090603

    41. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, John Wiley & Sons, New York, 2001.
    doi:10.1002/0471224758

    42. Mark, J. E., Polymer Data Handbook, Oxford University Press, New York, 1999.

    43. Harper, C. A., Modern Plastics Handbook, McGraw-Hill Professional, USA, 2000.

    44. Gogoi, P. J., M. M. Rabha, S. Bhattacharyya, and N. S. Bhattacharyya, "Miniaturization of body worn antenna using nano magneto-dielectric composite as substrate in C-band," Journal of Magnetism and Magnetic Materials, Vol. 414, 209-218, 2016.
    doi:10.1016/j.jmmm.2016.04.016

    45. Shahane, G. S., A. Kumar, M. Arora, R. P. Pant, and K. Lal, "Synthesis and characterization of Ni-Zn ferrite nanoparticles," J. Magne. Magne. Mater., Vol. 322, 1015-1019, 2010.
    doi:10.1016/j.jmmm.2009.12.006

    46. Mattei, J. L., E. Le Guen, A. Chevalier, and A. C. Tarot, "Experimental determination of magnetocrystalline anisotropy constants and saturation magnetostriction constants of NiZn and NiZnCo ferrites intended to be used for antennas miniaturization," J. Magne. Magne. Mater., Vol. 374, 762-768, 2015.
    doi:10.1016/j.jmmm.2014.09.026

    47. Son, S., M. Taheri, E. Carpenter, V. G. Harris, and M. E. McHenry, "Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch," J. Appl. Phys., Vol. 91, 7589-7591, 2002.
    doi:10.1063/1.1452705

    48. Maaz, K., S. Karim, A. Mumtaz, S. K. Hasanain, J. Liu, and J. L. Duan, "Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route," J. Magne. Magne. Mater., Vol. 321, 1838-1842, 2009.
    doi:10.1016/j.jmmm.2008.11.098

    49. Jiang, N. N., Y. Yang, Y. X. Zhang, J. P. Zhou, P. Liu, and C. Y. Deng, "Influence of zinc concentration on structure, complex permittivity and permeability of Ni-Zn ferrites at high frequency," J. Magne. Magne. Mater., Vol. 401, 370-377, 2016.
    doi:10.1016/j.jmmm.2015.10.003

    50. Gogoi, P. J., S. Bhattacharyya, and N. S. Bhattacharyya, "Linear low density polyethylene (LLDPE) as flexible substrate for wrist and arm antennas in C-band," J. Electronic Mater., Vol. 44, 1071-1080, 2015.
    doi:10.1007/s11664-015-3629-4

    51. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., 811-881, John Wiley & Sons, U.K., 2005.

    52. Garg, R., P. Bhartia, I. Bahl, and A. Ittipibon, Microstrip Antenna Design Handbook, 253-314, Artech House, London, 2001.

    53. Pucel, R. A. and D. J. Masse, "Microstrip propagation on magnetic substrates Part I: Design theory," IEEE Trans. Microwave Theory Techniq., Vol. 20, 304-308, 1972.
    doi:10.1109/TMTT.1972.1127749

    54. Hansen, R. C. and M. Burke, "Antennas with magneto-dielectrics," Microwave Opti. Technol. Lett., Vol. 26, 75-78, 2000.
    doi:10.1002/1098-2760(20000720)26:2<75::AID-MOP3>3.0.CO;2-W