Vol. 84

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-05-11

The Direction-of-Arrival and Polarization Estimation Using Coprime Array: a Reconstructed Covariance Matrix Approach

By Wen Dong, Ming Diao, and Lipeng Gao
Progress In Electromagnetics Research C, Vol. 84, 23-33, 2018
doi:10.2528/PIERC18032008

Abstract

In this paper, we propose a novel direction of arrival (DOA) and polarization estimation method to address the problem of a coprime polarization-sensitive array (PSA). For a PSA, there may be a zero element in the covariance matrix when the polarized signal comes from a specific direction. To overcome this problem, we utilize the reconstructed received data to obtain a new covariance matrix whose elements are all non-zero. Then, the coprime MUSIC and sparse signal reconstruction algorithms are used for DOA estimation. In addition, the power of noise can be estimated in this polarization model, which improves upon the sparse signal reconstruction algorithm. Compared with the normalized algorithm, the proposed method offers favorable performance in terms of accuracy. Furthermore, our method can identify the peaks of the true DOAs at a low signal-to-noise ratio (SNR). The simulation results demonstrate the effectiveness of the proposed method.

Citation


Wen Dong, Ming Diao, and Lipeng Gao, "The Direction-of-Arrival and Polarization Estimation Using Coprime Array: a Reconstructed Covariance Matrix Approach," Progress In Electromagnetics Research C, Vol. 84, 23-33, 2018.
doi:10.2528/PIERC18032008
http://jpier.org/PIERC/pier.php?paper=18032008

References


    1. Yuan, X., "Estimating the DOA and the polarization of a polynomial-phase signal using a single polarized vector-sensor," IEEE Transactions on Signal Processing, Vol. 60, 1270-1282, 2012.
    doi:10.1109/TSP.2011.2177263

    2. Si, W., P. Zhao, and Z. Qu, "Two-dimensional DOA and polarization estimation for a mixture of uncorrelated and coherent sources with sparsely-distributed vector sensor array," Sensors, Vol. 16, 1-23, 2016.
    doi:10.1109/JSEN.2016.2616227

    3. Goossens, R. and H. Rogier, "A hybrid UCA-RARE/root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling," IEEE Transactions on Antennas and Propagation, Vol. 55, 841-849, 2007.
    doi:10.1109/TAP.2007.891848

    4. Wong, K. T., L. Li, and M. D. Zoltowski, "Root-MUSIC-based direction-finding and polarization-estimation using diversely-polarized possibly-collocated antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 3, 129-132, 2004.
    doi:10.1109/LAWP.2004.831083

    5. Rahamim, D., J. Tabrikian, and R. Shavit, "Source localization using vector sensor array in a multipath environment," IEEE Transactions on Signal Processing, Vol. 52, 3096-3103, 2004.
    doi:10.1109/TSP.2004.836456

    6. He, J., S. Jiang, and J. Wang, "Polarization difference smoothing for direction finding of coherent signals," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, 469-480, 2010.
    doi:10.1109/TAES.2010.5417176

    7. Xu, Y. and Z. Liu, "Polarimetric angular smoothing algorithm for an electromagnetic vector-sensor array," IET Radar Sonar Navig., Vol. 1, 230-240, 2007.
    doi:10.1049/iet-rsn:20050108

    8. Diao, M. and C. L. An, "Direction finding of coexisted independent and coherent signals using electromagnetic vector sensor," J. Syst. Eng. Electron., Vol. 23, 481-487, 2012.
    doi:10.1109/JSEE.2012.00061

    9. Yuan, X., K. T. Wong, Z. Xu, and K. Agrawal, "Various triad compositions of collocated dipoles/loops, for direction finding and polarization estimation," IEEE Sensors Journal, Vol. 12, 1763-1771, 2012.
    doi:10.1109/JSEN.2011.2179532

    10. Wong, K. T. and X. Yuan, "Vector cross-product direction-finding with an electromagnetic vector-sensor of six orthogonally oriented but spatially non-collocating dipoles/loops," IEEE Transactions on Signal Processing, Vol. 59, 160-171, 2010.
    doi:10.1109/TSP.2010.2084085

    11. Song, Y., X. Yuan, and K. T. Wong, "Corrections to vector cross-product direction-finding with an electromagnetic vector-sensor of six orthogonally oriented but spatially non-collocating dipoles/loops," IEEE Transactions on Signal Processing, Vol. 62, 1028-1030, 2014.
    doi:10.1109/TSP.2013.2290501

    12. Song, Y., K. T. Wong, and F. Chen, "`Blind' calibration of vector sensors whose dipole/loop triads deviate from their nominal gains/phases/orientations/locations," Radio Science, Vol. 52, 1170-1189, 2017.
    doi:10.1002/2017RS006340

    13. Wong, K. T., Y. Song, C. J. Fulton, S. Khan, and W.-Y. Tam, "Electrically long dipoles in a collocated/orthogonal triad --- For direction finding and polarization estimation," IEEE Transactions on Antennas and Propagation, Vol. 65, 6057-6067, 2017.
    doi:10.1109/TAP.2017.2748183

    14. Kitavi, D. M., K. T. Wong, M. Zou, and K. Agrawal, "A lower bound of the estimation error of an emitter’s direction-of-arrival/polarization, for a collocated triad of orthogonal dipoles/loops that fail randomly," IET Microwaves, Antennas and Propagation, Vol. 11, 961-970, 2017.
    doi:10.1049/iet-map.2016.0918

    15. Au-Yeung, C. K. and K. T. Wong, "CRB: Sinusoid-sources estimation using collocated dipoles/loops," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, 94-109, 2009.
    doi:10.1109/TAES.2009.4805266

    16. Xu, Y., Z. Liu, K. T. Wong, and J. Cao, "Virtual-manifold ambiguity in HOS-based direction-finding with electromagnetic vector-sensors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, 1291-1308, 2008.
    doi:10.1109/TAES.2008.4667710

    17. Wong, K. T., "Direction finding/polarization estimation --- Dipole and/or loop triad(s)," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, 679-684, 2001.
    doi:10.1109/7.937478

    18. Wong, K. T., "Blind beamforming/geolocation for wideband-FFHs with unknown hop-sequences," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, 65-76, 2001.
    doi:10.1109/7.913668

    19. Wong, K. T. and M. D. Zoltowski, "Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation," IEEE Transactions on Antennas and Propagation, Vol. 45, 1467-1474, 1997.
    doi:10.1109/8.633852

    20. Cheng, Q. and Y. Hua, "Performance analysis of the MUSIC and Pencil-MUSIC algorithms for diversely polarized array," IEEE Transactions on Signal Processing, Vol. 32, 284-299, 1996.

    21. Wong, K. T. and M. D. Zoltowski, "Self-initiating MUSIC direction finding and polarization estimation in spatio-polarizational beamspace," IEEE Transactions on Antennas and Propagation, Vol. 48, 1235-1245, 2000.
    doi:10.1109/8.855485

    22. Zoltowski, M. D. and K. T. Wong, "ESPRIT-based 2D direction finding with a sparse array of electromagnetic vector-sensors," IEEE Transactions on Signal Processing, Vol. 48, 2195-2204, 2000.
    doi:10.1109/78.852000

    23. Li, J. and R. T. Compton, "Angle and polarization esrimation using ESPRIT with a polarization sensitive array," IEEE Transactions on Antennas and Propagation, Vol. 39, 1376-1383, 1991.
    doi:10.1109/8.99047

    24. Miron, S., Y. Song, D. Brie, and K. T. Wong, "Multilinear approach of direction finding using a sensor-array with multiple scales of spatial invariance," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, 2057-2070, 2015.
    doi:10.1109/TAES.2015.130576

    25. Wong, K. T. and M. D. Zoltowski, "Direction-finding with sparse rectangular dual-size spatial invariance arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, 1320-1336, 1998.
    doi:10.1109/7.722717

    26. Wong, K. T. and M. D. Zoltowski, "Closed-form direction-finding with arbitrarily spaced electromagnetic vector-sensors at unknown locations," IEEE Transactions on Antennas and Propagation, Vol. 48, 671-681, 2000.
    doi:10.1109/8.855485

    27. Zoltowski, M. D. and K. T. Wong, "Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform rectangular array grid," IEEE Transactions on Signal Processing, Vol. 48, 2205-2210, 2000.
    doi:10.1109/78.852001

    28. Pal, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Transactions on Signal Processing, Vol. 58, 4167-4181, 2010.
    doi:10.1109/TSP.2010.2049264

    29. Vaidyanathan, P. P. and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Transactions on Signal Processing, Vol. 59, 573-586, 2011.
    doi:10.1109/TSP.2010.2089682

    30. Zhou, C., Z. Shi, and Y. Gu, "DECOM: DOA estimation with combined MUSIC for coprime array," IEEE Int. Conf. Wireless Commun. Signal Process. (WCSP), 1-5, 2013.

    31. Liu, C. L. and P. P. Vaidyanathan, "Remarks on the spatial smoothing step in coarray MUSIC," IEEE Signal Process. Lett., Vol. 22, 1438-1442, 2015.
    doi:10.1109/LSP.2015.2409153

    32. Boudaher, E., Y. Jia, F. Ahmad, and M. G. Amin, "Multi-frequency co-prime arrays for high-resolution direction-of-arrival estimation," IEEE Signal Process., Vol. 63, 3797-3808, 2015.
    doi:10.1109/TSP.2015.2432734

    33. Pal, P., P. P. Vaidyanathan, F. Ahmad, and M. G. Amin, "Coprime sampling and the MUSIC algorithm," IEEE Digital Signal Proc. Workshop and IEEE Signal Proc., Vol. 47, 289-294, 2011.

    34. Friedlander, B. and A. J. Weiss, "Direction finding using spatial smoothing with interpolated arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, 574-587, 1992.
    doi:10.1109/7.144583

    35. Shi, Z., C. Zhou, Y. Gu, and N. A. Goodman, "Source estimation using coprime array: A sparse reconstruction perspective," IEEE Sensors Journal, Vol. 17, 755-765, 2017.
    doi:10.1109/JSEN.2016.2637059

    36. Tan, Z., Y. C. Eldar, and A. Nehorai, "Direction of arrival estimation using co-prime arrays: A super resolution viewpoint," IEEE Transactions on Signal Processing, Vol. 62, 5565-5576, 2014.
    doi:10.1109/TSP.2014.2354316

    37. Qin, S., Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation-," IEEE Transactions on Signal Processing, Vol. 63, 1377-1390, 2015.
    doi:10.1109/TSP.2015.2393838

    38. Dong, W., M. Diao, L. Gao, and L. Liu, "A low-complexity DOA and polarization method of polarization-sensitive array," Sensors, Vol. 17, 2017.
    doi:10.3390/s17061377

    39. Zhang, Y. D., M. G. Amin, and H. B. imed, "Sparsity-based DOA estimation using co-prime arrays," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 3967-3971, 2013.