Vol. 84
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-05-14
Research on the Key Issues in Power and Data Wireless Transmission of Implantable Medical Devices
By
Progress In Electromagnetics Research C, Vol. 84, 35-46, 2018
Abstract
In order to solve a key issue about power and data wireless transmission of implantable medical devices, M-ary differentially-encoded amplitude and phase-shift Keying (MDAPSK) is employed to balance the frequency selective contradiction in this paper. Subsequently, bio-capacitor model and biological path loss model are introduced to improve the accuracy of conventional wireless power transmission efficiency model. Based on 16DAPSK modulation, biological channel error rate analysis model is set up. Compared with experiment data, accuracy of the model is proved. Error codes suppression and error codes correction methods are optimized, and the optimization results have been verified by experiments. Lastly, it can be found that the power and data synchronized wireless transmission scheme is feasible. This work provides a new solution and model reference for power and data wireless transmission of implantable medical devices.
Citation
Xueping Li, Yuan Yang, and Ningmei Yu, "Research on the Key Issues in Power and Data Wireless Transmission of Implantable Medical Devices," Progress In Electromagnetics Research C, Vol. 84, 35-46, 2018.
doi:10.2528/PIERC18030706
References

1. Jung, L. H., P. Byrnes-Preston, R. Hessler, T. Lehmann, G. J. Suaning, and N. H. Lovell, "A dual band wireless power and FSK data telemetry for biomedical implants," Proceedings of the IEEE International Conference on Engineering in Medicine & Biology Society Lyon, 6596-6599, France, August 23-26, 2007.

2. Ghenim, A., D. Daoud, M. Ghorbel, A. B. Hamida, and J. Tomas, "A dual band wireless power and DPSK data telemetry for biomedical implants," Proceedings of the International Conference on Microelectronics, 1-5, Tunisia, December 19-22, 2011.

3. Ramrakhyani, A. K. and G. Lazzi, Wireless Applications: Dual Band Power and Data Telemetry, Springer, New York, 2015.

4. Wang, G., P. Wang, Y. Tang, and W. Liu, "Analysis of dual band power and data telemetry for biomedical implants," IEEE Transactions on Biomedical Circuits & Systems, Vol. 6, 208-215, 2012.
doi:10.1109/TBCAS.2011.2171958

5. Zhou, M., M. R. Yuce, and W. Liu, "A non-coherent dpsk data receiver with interference cancellation for dual-band transcutaneous telemetries," IEEE Journal of Solid-State Circuits, Vol. 43, 2003-2012, 2008.
doi:10.1109/JSSC.2008.2001881

6. Wang, G., W. Liu, M. Sivaprakasam, M. Zhou, J. D. Weiland, and M. S. Humayun, "A dual band wireless power and data telemetry for retinal prosthesis," Proceedings of the IEEE International Conference on Engineering in Medicine and Biology Society, 4392-4395, New York, USA, August 30-September 3, 2006.

7. Li, X., Y. Yang, N. Yu, and S. Qiao, "Simultaneous energy and data wireless transfer attenuation in biological channel of deep implantable medical devices: Characteristic analysis and modeling," Progress In Electromagnetics Research M, Vol. 56, 169-177, 2017.
doi:10.2528/PIERM17022102

8. Qin, Y. J., H. Kiyoshi, and Y. A. Liu, "A novel demodulation decoding method for coded 16dapsk signals," Journal of Electronics & Information Technology, Vol. 28, 1645-1648, 2006.

9. Adachi, F., "Error rate analysis of differentially encoded and detected 16apsk under rician fading," IEEE Transactions on Vehicular Technology, Vol. 45, 1-11, 2002.
doi:10.1109/25.481815

10. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, 2007.
doi:10.1126/science.1143254

11. Zlatanov, N., D. W. K. Ng, and R. Schober, "Capacity of the two-hop relay channel with wireless energy transfer from relay to source and energy transmission cost," IEEE Transactions on Wireless Communications, Vol. 16, 647-662, 2016.
doi:10.1109/TWC.2016.2627047

12. Maehara, D., G. K. Tran, K. Sakaguchi, and K. Araki, "Experimental study on battery-less sensor network activated by multi-point wireless energy transmission," IEICE Transactions on Communications, Vol. E99.B, No. 4, 135-150, 2016.
doi:10.1587/transcom.2015EBP3318

13. Li, X., Y. Yang, and Y. Gao, "Visual prosthesis wireless energy transfer system optimal modeling," Biomedical Engineering Online, Vol. 13, 1-11, 2014.

14. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine & Biology, Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

15. Chen, K., Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu, "An integrated 256-channel epiretinal prosthesis," IEEE Journal of Solid-State Circuits, Vol. 45, 1946-1956, 2010.
doi:10.1109/JSSC.2010.2055371

16. Khaleghi, A., R. Chavez-Santiago, and I. Balasingham, "Ultra-wideband pulse-based data communications for medical implants," IET Communications, Vol. 4, 1889-1897, 2010.
doi:10.1049/iet-com.2009.0692

17. Chae, M. S., Z. Yang, M. R. Yuce, L. Hoang, and W. Liu, "A 128-channel 6mw wireless neural recording ic with spike feature extraction and uwb transmitter," IEEE Transactions on Neural Systems & Rehabilitation Engineering, Vol. 17, 312-321, 2009.
doi:10.1109/TNSRE.2009.2021607

18. Li, X., C. Y. Tsui, and W. H. Ki, "A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices," IEEE Journal of Solid-State Circuits, Vol. 50, 978-989, 2015.
doi:10.1109/JSSC.2014.2387832