Vol. 84

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-05-15

Compact UWB MIMO Antenna with Metamaterial-Inspired Isolator

By Fei Wang, Zhaoyun Duan, Shifeng Li, Zhan-Liang Wang, and Yu-Bin Gong
Progress In Electromagnetics Research C, Vol. 84, 61-74, 2018
doi:10.2528/PIERC18030201

Abstract

In this paper, a dual-band complementary split ring resonator (C-SRR) is used to improve the band-notch effect relative to the traditional SRR. Meanwhile, we employ a brand-new SRR unit cell as an isolator for decoupling among multiple bands without enlarging the dimensions of the multiple-input-multiple-output (MIMO) antenna. Therefore, a compact ultra-wideband MIMO antenna is developed. Compared with the previous work, the proposed MIMO antenna also has obvious advantages such as high isolation and miniaturization (the dimensions are only 13.5 mm × 34 mm). The metamaterial-inspired UWB MIMO antenna presented here is suitable for small scaled mobile devices.

Citation


Fei Wang, Zhaoyun Duan, Shifeng Li, Zhan-Liang Wang, and Yu-Bin Gong, "Compact UWB MIMO Antenna with Metamaterial-Inspired Isolator," Progress In Electromagnetics Research C, Vol. 84, 61-74, 2018.
doi:10.2528/PIERC18030201
http://jpier.org/PIERC/pier.php?paper=18030201

References


    1. Bolin, T., et al., "Two antenna receive diversity performance in indoor environment," Electron. Lett., Vol. 41, No. 22, 1205-1206, 2005.
    doi:10.1049/el:20053365

    2. Ko, S. C. K. and R. D. Murch, "Compact integrated diversity antenna for wireless communications," IEEE Trans. Antennas Propag., Vol. 49, No. 6, 954-960, 2001.
    doi:10.1109/8.931154

    3., "First report and order in the matter of revision of Part 15 of the Commission’s rules regarding ultra-wideband transmission systems FCC,", ET-Docket 98-153, 2002.
    doi:10.1109/8.931154

    4. See, T. S. P. and Z. N. Chen, "An ultrawideband diversity antenna," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1597-1605, 2009.
    doi:10.1109/TAP.2009.2019908

    5. Saraswat, R. K. and M. Kumar, "A frequency band reconfigurable UWB antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
    doi:10.2528/PIERB15090103

    6. Rajagopalan, A., et al., "Increasing channel capacity of an ultrawideband MIMO system using vector antennas," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2880-2887, 2007.
    doi:10.1109/TAP.2007.905938

    7. Khan, M. S., A. D. Capobianco, A. L. Najam, I. Shoaib, E. Autizi, and M. F. Shafique, "Compact UWB-MIMO antenna array with a floating digitated decoupling structure," IET Microw., Antennas & Propag., Vol. 8, No. 10, 747-753, 2014.
    doi:10.1049/iet-map.2013.0672

    8. Zhang, S., et al., "Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1279-1282, 2009.
    doi:10.1109/LAWP.2009.2037027

    9. Liu, L., S. W. Cheung, and T. I. Yuk, " Compact MIMO antenna for portable devices in UWB applications," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4257-4264, 2013.
    doi:10.1109/TAP.2013.2263277

    10. Chacko, B. P., G. Augustin, and T. A. Denidni, "Uniplanar slot antenna for ultrawideband polarization-diversity applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 88-91, 2013.
    doi:10.1109/LAWP.2013.2242841

    11. Iqbal, A., O. A. Saraereh, A.W. Ahmad, and S. Bashir, "Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna," IEEE Access, Vol. 6, 2755-2759, 2018.
    doi:10.1109/ACCESS.2017.2785232

    12. Duan, Z., B.-I. Wu, J.-A. Kong, F. Kong, and S. Xi, "Enhancement of radiation properties of a compact planar antenna using transformation media as substrates," Progress In Electromagnetics Research, Vol. 83, 375-384, 2008.
    doi:10.2528/PIER08062703

    13. Wang, F., et al., "Compact high isolation WLAN MIMO antenna based on CRLH," iWEM 2015, 1-2, Taipei, China, 2015.

    14. Yang, F. and Y. Rahmat-Sami, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
    doi:10.1109/TAP.2003.817983

    15. Yang, L., et al., "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, 2005.
    doi:10.1109/TMTT.2004.839322

    16. Rani, M. S. A., et al., "Directional UWB antenna with a parabolic ground structure and split ring resonator for a 5.80 GHz band notch," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 1, 14-22, 2013.
    doi:10.1080/09205071.2012.737456

    17. Wang, F., et al., "A new metamaterial-based UWB MIMO antenna," IEEE IWS 2015, 1-4, Shenzhen, China, 2015.

    18. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
    doi:10.2528/PIERB15112703

    19. Li, Q., et al., "Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 1170-1173, 2015.

    20. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2902, 2010.
    doi:10.1109/TAP.2010.2052560

    21. Ferrer, P. J., J. M. Gonzalez-Arbesu, and J. Romeu, "Decorrelation of two closely spaced antennas with a metamaterial AMC surface," Microw. Opt. Technol. Lett., Vol. 50, No. 5, 1414-1417, 2008.
    doi:10.1002/mop.23365

    22. Zhu, J., S. Li, S. Liao, and Q. Xue, "Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor," IEEE Antennas Wireless Propag. Lett., Vol. 17, 458-462, 2018.
    doi:10.1109/LAWP.2018.2795018

    23. Ketzaki, D. A. and T. V. Yioultsis, "Metamaterial-based design of planar compact MIMO monopoles," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2758-2766, 2013.
    doi:10.1109/TAP.2013.2243813

    24. Abdalla, M. A. and A. A. Ibrahim, "Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1452-1455, 2013.
    doi:10.1109/LAWP.2013.2288338

    25. Khan, M. S., et al., "A compact CSRR enabled UWB MIMO antenna," IEEE Antennas Wireless Propag. Lett., Vol. 58, 808-812, 2016.

    26. Duan, Z., et al., "Sub-wavelength waveguide loaded by a complementary electric metamaterial for vacuum electron devices," Phys. Plasmas, Vol. 21, No. 10, 103301, 2014.
    doi:10.1063/1.4897392

    27. Pendry, J. B., A. J. Holden, and D. J. Robbins, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    28. Deng, J. Y., L. X. Guo, and X. L. Liu, "An ultrawideband MIMO antenna with a high isolation," IEEE Antennas Wireless Propag. Lett., Vol. 15, 182-185, 2016.
    doi:10.1109/LAWP.2015.2437713

    29. Mao, C. X. and Q. X. Chu, "Compact co-radiator UWB-MIMO antenna with dual polarization," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4474-4480, 2014.
    doi:10.1109/TAP.2014.2333066

    30. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2015.

    31. Li, J. F., et al., "Compact dual band-notched UWB MIMO antenna with high isolation ," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4759-4766, 2013.
    doi:10.1109/TAP.2013.2267653

    32. Liu, L., S. W. Cheung, Y. F. Weng, and T. I. Yuk, "Cable effects on measuring small planar UWB monopole antennas," Ultra Wideband Current Status and Future Trends, edited by Mohammad Abdul Matin, 2012.

    33. Manteghi, M. and Y. Rahmat-Samii, "Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 466-474, 2005.
    doi:10.1109/TAP.2004.838794

    34. Hallbjorner, P., "The significance of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas," IEEE Antennas Wireless Propag. Lett., Vol. 4, 97-99, 2005.
    doi:10.1109/LAWP.2005.845913

    35. Tian, R., B. K. Lau, and Z. Ying, "Multiplexing efficiency of MIMO antennas," IEEE Antennas Wireless Propag. Lett., Vol. 10, 183-186, 2011.
    doi:10.1109/LAWP.2011.2125773