Vol. 83

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-04-12

A Compact Ka-Band TDD Transceiver System Module with Attractive Temperature Characteristic

By Yin Tian, Tao Dang, Guang-Ming Wang, Jie Yang, Wei Tong, Zhigang Wang, Yuehang Xu, Yu Cao, Yijun Chen, Lei Han, Dong Chen, and Yexi Song
Progress In Electromagnetics Research C, Vol. 83, 113-124, 2018
doi:10.2528/PIERC18020606

Abstract

This paper presents a Ka-band TDD transceiver system module for the secondary surveillance radar application with attractive temperature characteristic. Four multifunction chips and a MEMS filter are designed and fabricated in GaAs pseudomorphic high electron mobility transistor (pHEMT) process and MEMS technology in this work, respectively. These multifunction chips and MEMS filter with some other commercial chips are assembled in a compact cavity to form the transceiver system. The temperature characteristics of the designed chips and the whole transceiver module are measured respectively in this work. Benefiting from the designed temperature compensation circuits on the chips, the transceiver is able to work from -55˚C to +75˚C with little performance fluctuation. The noise figure of the receiver is less than 3.7 dB in the 400 MHz working bandwidth. Its dynamic range is more than 59 dB with more than 23.9 dB power gain. The maximum output power of the transmitter is larger than 30.3 dBm. The system only has two input/output ports and one control bus, which is suitable for the large-scale system integration.

Citation


Yin Tian, Tao Dang, Guang-Ming Wang, Jie Yang, Wei Tong, Zhigang Wang, Yuehang Xu, Yu Cao, Yijun Chen, Lei Han, Dong Chen, and Yexi Song, "A Compact Ka-Band TDD Transceiver System Module with Attractive Temperature Characteristic," Progress In Electromagnetics Research C, Vol. 83, 113-124, 2018.
doi:10.2528/PIERC18020606
http://jpier.org/PIERC/pier.php?paper=18020606

References


    1. Tian, Y., et al., "A Ka-band TDD front-end chip with 24.7% bandwidth and temperature compensation technology," IEICE Electronics Express, Vol. 14, No. 9, 20170350-20170350, 2017.
    doi:10.1587/elex.14.20170350

    2. Roh, W., et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Communications Magazine, Vol. 52, No. 2, 106-113, 2014.
    doi:10.1109/MCOM.2014.6736750

    3. Curtis, J., Z. Hongyu, and F. Aryanfar, "A fully integrated Ka-band front end for 5G transceiver," IEEE International Microwave Symposium (IMS), 1-3, 2016.

    4. Li, Q. and Y. P. Zhang, "CMOS T/R switch design: Towards ultra-wideband and higher frequency," IEEE Journal of Solid-State Circuits, Vol. 42, No. 3, 563-570, 2007.
    doi:10.1109/JSSC.2006.891442

    5. Shirakawa, K., Y. Kawasaki, Y. Ohashi, and N. Okubo, "A 15/60 GHz one-stage MMIC frequency quadrupler," IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 35-38, 1996.

    6. Lin, K. Y., Y. J. Wang, D. C. Niu, and H. Wang, "Millimeter-wave MMIC single-pole-double-throw passive HEMT switches using impedance-transformation networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1076-1085, 2003.
    doi:10.1109/TMTT.2003.809676

    7. Lin, K. Y., W. H. Tu, P. Y. Chen, and H. Y. Chang, "Millimeter-wave MMIC passive HEMT switches using traveling-wave concept," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1798-1808, 2004.
    doi:10.1109/TMTT.2004.831574

    8. Chou, H. T., Z. L. Ke, and H. K. Chiou, "A low-power, compact size millimeter-wave two-stage current-reused low noise amplifier in 90-nm CMOS technology," Asia Pacific Microwave Conference Proceedings, 750-752, 2012.

    9. Gong, K., W. Hong, Y. Zhang, P. Chen, and C. J. You, "Substrate integrated waveguide quasi-elliptic filters with controllable electric and magnetic mixed coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 3071-3078, 2012.
    doi:10.1109/TMTT.2012.2209437

    10. Djerafi, T., K. Wu, and D. Deslandes, "A temperature-compensation technique for substrate integrated waveguide cavities and filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2448-2455, 2012.
    doi:10.1109/TMTT.2012.2201741

    11. Farhan Shafique, M. and I. D. Robertson, "Laser machining of microvias and trenches for substrate integrated waveguides in LTCC technology," European Microwave Conference, 272-275, 2009.

    12. Schuster, C., G. Leonhardt, and W. Fichtner, "Electromagnetic simulation of bonding wires and comparison with wide band measurements," IEEE Transactions on Advanced Packaging, Vol. 23, No. 1, 69-79, 2000.
    doi:10.1109/6040.826764

    13. Lim, J. H., D. H. Kwon, J. S. Rieh, S. W. Kim, and S. W. Hwang, "RF characterization and modeling of various wire bond transitions," IEEE Transactions on Advanced Packaging, Vol. 28, No. 4, 772-778, 2005.
    doi:10.1109/TADVP.2005.853554

    14. Mouthaan, K., R. Tinti, M. D. Kok, H. C. D. Graaff, J. L. Tauritz, and J. Slotboom, "Microwave modelling and measurement of the self- and mutual inductance of coupled bondwires," Bipolar/BiCMOS Circuits and Technology Meeting, 166-169, 1997.

    15. Mertens, K. L. R. and M. S. J. Steyaert, "A 700-MHz 1-W fully differential CMOS class-E power amplifier," IEEE Journal of Solid-State Circuits, Vol. 37, No. 2, 137-141, 2002.
    doi:10.1109/4.982419