With the increase of low power devices, the design of a compact and efficient rectenna is essential for supplying energy to the devices. This paper presents a compact rectenna for high efficient WiFi energy harvesting. A novel fractal geometry is introduced in the design of antenna for miniaturization, and the ability to harvest WiFi energy is enhanced due to its characteristics of self-similarity and space filling. Besides, a single stub matching network is designed to achieve high conversion efficiency with a relatively low input power ranging from -20 dBm to 0 dBm. Simulation and experiments have been carried out. The results show that the proposed antenna features a good characteristic of reflection coefficient and realized gain at WiFi band. The highest RF to DC conversion efficiency of the rectenna is up to 52% at 2.48 GHz with the input power of 0 dBm. This study demonstrates that the proposed rectenna can be applied to a range of low power electronic applications.
2. Shaikh, F. K. and S. Zeadally, "Energy harvesting in wireless sensor networks: A comprehensive review," Renew. Sustain. Energy Rev., Vol. 55, 1041-1054, 2016.
doi:10.1016/j.rser.2015.11.010
3. Song, C. Y., Y. Huang, J. Zhou J. Zhang, and S. Yuan, "A high-efficiency broadband rectenna for ambient wireless energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 63, 3486-3495, 2015.
doi:10.1109/TAP.2015.2431719
4. Mei, H., X. Yang, B. Han, and G. Tan, "High-efficiency microstrip rectenna for microwave power transmission at Ka band with low cost," Iet Microwaves Antennas & Propagation, Vol. 10, 1648-1655, 2016.
doi:10.1049/iet-map.2016.0025
5. Masotti, D., A. Costanzo, M. D. Prete, and V. Rizzoli, "Genetic based design of a tetra-band high-efficiency radio-frequency energy harvesting system," IET Microwave. Antennas Propagat., Vol. 7, 1254-1263, 2013.
doi:10.1049/iet-map.2013.0056
6. Shin, J., M. Seo, and J. Choi, "A compact and wideband circularly polarized rectenna with high efficiency at X-band," Progress In Electromagnetics Research, Vol. 145, 163-173, 2014.
doi:10.2528/PIER14012803
7. Sun, H. and G. Wen, "A new rectenna using beamwidth-enhanced antenna array for RF power harvesting applications," IEEE Antennas & Wireless Propagation Letters, 2016.
8. Lu, P., X. S. Yang, and J. L. Li, "Polarization reconfigurable broadband rectenna with tunable matching network for microwave power transmission," IEEE Trans. Antennas Propag., Vol. 64, 1136-1141, 2016.
doi:10.1109/TAP.2016.2518198
9. Gretskih, D. V., et al., "Mathematical model of large rectenna arrays for wireless energy transfer," Progress In Electromagnetics Research, Vol. 74, 77-91, 2017.
doi:10.2528/PIERB17010503
10. Kuzu, S. and N. Akcam, "Array antenna using defected ground structure shaped with fractal form generated by apollonius circle," IEEE Antennas & Wireless Propagation Letters, Vol. 16, 1020-1023, 2016.
doi:10.1109/LAWP.2016.2616944
11. Alqadami, A. S. M., M. F. Jamlos, and I. Islam, "Multi-band antenna array based on double negative metamaterial for multi automotive applications," Progress In Electromagnetics Research, Vol. 159, 27-37, 2017.
doi:10.2528/PIER16091203
12. Sun, H., Y. Guo, M. He, and Z. Zhong, "A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting," IEEE Antennas Wirel. Propag. Lett., Vol. 22, 918-921, 2013.
doi:10.1109/LAWP.2013.2272873
13. Choi, D. Y., S. Shrestha, and S. K. Noh, "Design and performance of an efficient rectenna incorporating a fractal structure," International Journal of Communication Systems, Vol. 27, 661-679, 2014.
doi:10.1002/dac.2587
14. Dhaliwal, B. S. and S. S. Pattnaik, "BFOANN ensemble hybrid algorithm to design compact fractal antenna for rectenna system," Neural Computing & Applications, Vol. 28, 1-12, 2016.
doi:10.1162/NECO_a_00798
15. Mahfoudi, H., M. Tellache, and H. Takhedmit, "A wideband fractal rectenna for energy harvesting applications," 2016 10th European Conference on Antennas and Propagation, 1-4, 2016.
16. Zeng, M., A. Andrenko, and X. Liu, "A compact fractal loop rectenna for RF energy harvesting," IEEE Antennas and Wireless Propagation, Vol. 16, 2424-2427, 2017.
doi:10.1109/LAWP.2017.2722460
17. Palazzi, V., C. Kalialakis, and F. Alimenti, "Performance analysis of a ultra-compact low-power rectenna in paper substrate for RF energy harvesting," Wireless Sensors & Sensor Networks, 65-68, 2017.
18. Arrawatia, M., M. S. Baghini, and G. Kumar, "Broadband bent triangular omnidirectional antenna for RF energy harvesting," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 36-39, 2016.
19. Shi, Y. and J. Liu, "Wideband and low-profile omnidirectional circularly-polarized antenna with Slits and shorting-vias," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 686-689, 2016.
doi:10.1109/LAWP.2015.2469277
20. Mahmud, M. Z., M. T. Islam, and M. Samsuzzaman, "Design and parametric investigation of directional antenna for microwave imaging application," Iet Microwaves Antennas & Propagation, Vol. 11, 770-778, 2017.
doi:10.1049/iet-map.2016.0774
21. Song, C. Y., Y. Huang, and P. Carter, "A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting," IEEE Transactions on Antennas & Propagation, Vol. 64, 3160-3171, 2016.
doi:10.1109/TAP.2016.2565697
22. Song, C. Y., Y. Huang, and J. F. Zhou, "Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting," IEEE Transactions on Industrial Electronics, Vol. 64, 3950-3961, 2017.
doi:10.1109/TIE.2016.2645505
23. Kumar, A., S. Sinha, and A. Sepahvand, "Improved design optimization for high-efficiency matching networks," IEEE Transactions on Power Electronics, Vol. 33, 37-50, 2017.
doi:10.1109/TPEL.2017.2670640
24. Chandravanshi, S. and M. J. Akhtar, "Design of efficient rectifier using IDC and harmonic rejection filter in GSM/COMA band for RF energy harvesting," Microwave & Optical Technology Letters, Vol. 59, 681-686, 2017.
doi:10.1002/mop.30365
25. Xu, X. G., X. X. Zhang, X. Li, and Z. Cheng, "Design of built-in snowflake microstrip antenna built in high-voltage switchgear," High Voltage Engineering, Vol. 42, 3207-3213, 2016.