Vol. 82

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-03-28

Compact QMSIW Based Antennas for WLAN/WBAN Applications

By Divya Chaturvedi and Singaravelu Raghavan
Progress In Electromagnetics Research C, Vol. 82, 145-153, 2018
doi:10.2528/PIERC18012003

Abstract

In this paper, two compact planar substrate integrated waveguide (SIW) cavity-backed antennas are proposed for wireless local area network (WLAN) at 5.5 GHz and wireless body area network (WBAN) at 5.8 GHz. The miniaturization is achieved with the concept of quarter-mode-topology, and the size of the cavity is reduced up to one-fourth of the circular SIW cavity. A L-shaped slot is etched on the top plane for miniaturization, and antenna-1 is realized which resonates at 5.5 GHz. A metal strip has been added in the middle section of the slot, and antenna-2 is realized, which resonates at 5.8 GHz. Both proposed antennas are tested in free space, while the performance of antenna-2 is investigated for on-body condition. In free space, the measured impedance bandwidths of the antenna are 160 MHz and 210 MHz at 5.5 GHz and 5.8 GHz, respectively. The radiation efficiency of the antenna is 89.4% in free space and 57% on phantom at 5.8 GHz. Both measured and simulated results are observed, and they are in a good agreement.

Citation


Divya Chaturvedi and Singaravelu Raghavan, "Compact QMSIW Based Antennas for WLAN/WBAN Applications," Progress In Electromagnetics Research C, Vol. 82, 145-153, 2018.
doi:10.2528/PIERC18012003
http://jpier.org/PIERC/pier.php?paper=18012003

References


    1. Liu, Z. G. and Y. X. Guo, "Dual-band low profile antenna for body Centric communications," IEEE Trans. Antennas. Propag., Vol. 61, No. 4, 2282-2285, 2013.
    doi:10.1109/TAP.2012.2234071

    2. Chi, Y. J. and F. C. Chen, "On-body Adhesive-bandage-like antenna for wireless medical telemetry service," IEEE Trans. Antennas Propag., Vol. 62, 2472-2480, 2014.
    doi:10.1109/TAP.2014.2308918

    3. Kang, D. G., J. Tak, and J. Choi, "Lowprofile dipole antenna with parasitic elements for WBAN applications," Microw. Opt. Technol. Lett., Vol. 58, No. 5, 1093-1097, 2016.
    doi:10.1002/mop.29749

    4. Raad, H. K., H. M. Al-Rizzo, A. I. Abbosh, and A. I. Hammoodi, "A compact dual band polyimide based antenna for wearable and flexible telemedicine devices," Progress In Electromagnetics Research C, Vol. 63, 153-161, 2016.
    doi:10.2528/PIERC16010707

    5. Chen, Y. S. and T. Y. Ku, "A low-profile wearable antenna using a miniature high impedance surface for smartwatch applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1144-1147, 2015.

    6. Lacik, J., T. Mikulasek, Z. Raida, and T. Urbanec, "Substrate-Integrated waveguide monopolar ring-slot antenna," Microw. Opt. Technol. Lett., Vol. 56, 1865-1869, 2014.
    doi:10.1002/mop.28465

    7. Luo, G. Q., Z. F. Hu, L. X. Dong, and L. L. Sun, "Planar slot antenna backed by substrate integrated waveguide cavity," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 236-239, 2008.

    8. Liu, W. C. and C. S. Chen, "Design of missile-mounted SIW antenna with high directivity for data transmission," Progress In Electromagnetics Research C, Vol. 38, 79-88, 2013.
    doi:10.2528/PIERC13012910

    9. Khan, A. A. and M. K. Mandal, "Miniaturized substrate integrated waveguide (SIW) power dividers," IEEE Microw. Wirel. Compon. Lett., Vol. 26, No. 1, 888-890, 2016.
    doi:10.1109/LMWC.2016.2615005

    10. Khan, A. A. and M. K. Mandal, "Dual-band substrate integrated waveguide filter with independently controllable bandwidth," Asia-Pacific Microwave Conference (APMC), 1-4, 2016.

    11. Liu, X., H. Song, C. Zhong, Y. Chen, and T. Luo, "Design of differential-mode bandpass filters on SIW structure," Progress In Electromagnetics Research, Vol. 72, 69-74, 2018.
    doi:10.2528/PIERL17090406

    12. Kumar, A. and S. Raghavan, "Wideband slotted substrate integrated waveguide cavity-backed antenna for Ku-band application," Microw. Opt. Techol. Lett., Vol. 59, 1613-1619, 2017.
    doi:10.1002/mop.30594

    13. Razavi, S. A. and M. H. Neshati, "Development of a linearly polarized cavity-backed antenna using HMSIW technique," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1307-1310, 2012.
    doi:10.1109/LAWP.2012.2227231

    14. Chaturvedi, D. and S. Raghavan, "A dual-band half-mode substrate integrated waveguide-based antenna for WLAN/WBAN applications," International Journal of RF and Microwave Computer-Aided Engineering, DOI: 10.1002/mmce.21239, 2018.

    15. Agneessens, S. and H. Rogier, "Compact half diamond dual-band textile HMSIW on body antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2374-2381, 2014.
    doi:10.1109/TAP.2014.2308526

    16. Jin, C., R. Li, A. Alphones, and X. Bao, "Quarter-mode substrate integrated waveguide and its application to antennas design," IEEE Trans. Ant. Propag., Vol. 61, No. 6, 2921-2928, 2013.
    doi:10.1109/TAP.2013.2250238

    17. Chaturvedi, D. and S. Raghavan, "Circular quarter-mode SIW antenna for WBAN application," IETE J Res., 1-7, 2017, Doi: 10.1080/03772063.2017.1358115.

    18. Sam, S. and S. Lim, "Electrically small eighth-mode substrate-integrated waveguide (EMSIW) antenna with different resonant frequencies depending on rotation of complementary split ring resonator," IEEE Trans. Antennas Propag., Vol. 6, No. 10, 4933-39, 2013.
    doi:10.1109/TAP.2013.2272676

    19. Hong, G. Y., J. Tak, and J. Choi, "An all-textile SIW cavity-backed circular ring-slot antenna for WBAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1995-1999, 2016.
    doi:10.1109/LAWP.2016.2549578

    20. Moro, R., S. Agneessens, H. Rogier, and M. Bozzi, "Wearable textile antenna in substrate integrated waveguide technology ," Electronics Letters, Vol. 48, No. 16, 985-87, 2012.
    doi:10.1049/el.2012.2349

    21. Lajevardi, M. E. and M. Kamyab, "A low-cost wideband quasi-yagi SIW-based textile antenna," Progress In Electromagnetics Research, Vol. 67, 53-59, 2017.
    doi:10.2528/PIERL17010403