Vol. 83

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-04-08

Surface Plasmon Effects and Resonance State on Square Lattice of Metallic Photonic Crystals and Defect Mode in h Polarization

By Khee Lam Low, Mohd Zubir Mat Jafri, Sohail A. Khan, and Donald G. S. Chuah
Progress In Electromagnetics Research C, Vol. 83, 45-56, 2018
doi:10.2528/PIERC18011601

Abstract

The surface plasmon effect in metallic photonic crystals has been investigated. Band structure graph is the only graph that can be used to explain the characteristics of photonic crystals. In this work, band structure graphs have been used to describe these characteristics, which include the surface plasmon effect of photonic crystals. Recently, band structure graphs for frequency-dependent materials have been analyzed by several researchers. The surface plasmon effect has been found for these materials. This article reports the effect of surface plasmons which cause resonance state in the metallic photonic crystals when the relative permittivity is changed from band structure graphs. The numerical results from the commercial software show the magnetic field distribution of waves on the normal photonic crystals, and defect mode is added for each frequency.

Citation


Khee Lam Low, Mohd Zubir Mat Jafri, Sohail A. Khan, and Donald G. S. Chuah, "Surface Plasmon Effects and Resonance State on Square Lattice of Metallic Photonic Crystals and Defect Mode in h Polarization," Progress In Electromagnetics Research C, Vol. 83, 45-56, 2018.
doi:10.2528/PIERC18011601
http://jpier.org/PIERC/pier.php?paper=18011601

References


    1. Yablonovitch, E., "Photonic band-gap structures," J. Opt. Soc. Am. B, Vol. 10, No. 2, 13, 1993.
    doi:10.1364/JOSAB.10.000283

    2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 4, 1987.
    doi:10.1103/PhysRevLett.58.2486

    3. Amir Hosseini, H. N. and Yehia Massouda, "Triangular lattice plasmonic photonic band gaps in subwavelength metal-insulator-metal waveguide structures," Appl. Phys. Lett., Vol. 92, 3, 2008.

    4. Brand, S., R. A. Abram, and M. A. Kaliteevski, "Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods," Phys. Rev. B, Vol. 75, 7, 2007.

    5. Crist, A., S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Plasmon polaritons in a metallic photonic crystal slab," Phys. Status Solidi, Vol. 5774, No. 5, 1393-1396, 2010.

    6. El-Kady, I., M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B, Vol. 62, No. 23, 4, 2000.
    doi:10.1103/PhysRevB.62.15299

    7. Ghoshal, A. and P. G. Kik, "Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays," J. Appl. Phys., Vol. 103, 8, 2008.

    8. Ito, T. and K. Sakoda, "Photonic bands of metallic systems. II. Features of surface plasmon polaritons," Phys. Rev. B, Vol. 64, 8, 2001.

    9. Keskinen, M. J., P. Loschialpo, D. Forester, and J. Schelleng, "Photonic band gap structure and transmissivity of frequency-dependent metallic-dielectric systems," transmissivity of frequency-dependent metallic-dielectric systems, Vol. 88, No. 10, 6, 2000.

    10. Kuzmiak, V. and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B, Vol. 55, No. 12, 18, 1997.
    doi:10.1103/PhysRevB.55.7427

    11. Kuzmiak, V. and A. A. Maradudin, "Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components," Phys. Rev. B, Vol. 58, No. 11, 22, 1998.
    doi:10.1103/PhysRevB.58.7230

    12. Kuzmiak, V., A. A. Maradudin, and F. Pincemin, "Photonic band structures of two-dimensional systems containing metallic components," Phys. Rev. B, Vol. 50, No. 23, 10, 1994.
    doi:10.1103/PhysRevB.50.16835

    13. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express, Vol. 11, No. 7, 9, 2003.
    doi:10.1364/OE.11.000746

    14. Moreno, E., D. Erni, and C. Hafner, "Band structure computations of metallic photonic crystals with the multiple multipole method," Phys. Rev. B, Vol. 65, 10, 2002.

    15. O’Brien, S. and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Physics Condens. Matter, Vol. 14, No. 15, 11, 2002.

    16. Ortuno, R., C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, "Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays," Phys. Rev. B, Vol. 79, 10, 2009.

    17. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett., Vol. 69, No. 19, 4, 1992.
    doi:10.1103/PhysRevLett.69.2772

    18. Pimenov, A. and A. Loidl, "Conductivity and permittivity of two-dimensional metallic photonic crystals," Phys. Rev. Lett., Vol. 96, 4, 2006.

    19. Sakoda, K., N. Kawai, and T. Ito, "Photonic bands of metallic systems. I. Principle of calculation and accuracy," Phys. Rev. B, Vol. 64, 8, 2001.

    20. Ustyantsev, M. A., L. F. Marsal, J. Ferre-Borrull, and J. Pallares, "Effect of the dielectric background on dispersion characteristics of metallo-dielectric photonic crystals," Opt. Commnuications, Vol. 260, 5, 2006.

    21. Xu, X., Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, "Effective plasma frequency in one-dimensional metallic-dieletric photonic crystals," Appl. Phys. Lett., Vol. 86, 3, 2005.
    doi:10.1063/1.1922080

    22. Zeid, A. and H. Baudrand, "Electromagnetic scattering by metallic holes and its applications in microwave circuit design," microwave circuit design, Vol. 50, No. 4, 1198-1206, 2002.

    23. Zhao, Y. and D. R. Grischkowsky, "2-D terahertz metallic photonic crystals in parallel-plate waveguides," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 4, 8, 2007.
    doi:10.1109/TMTT.2007.892798

    24. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Effective plasma frequency for two-dimensional metallic photonic crystals," Progress In Electromagnetics Research M, Vol. 12, 13, 2010.

    25. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Band gap calculation on 2D square lattice metallic slab photonic crystals with air rods," 3rd International Meeting on Frontiers of Physics 2009, Kuala Lumpur, Malaysia, 2009.

    26. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Band gap study using plane wave expansion method for metallic slab with air rods in E polarizing mode," Chinese J. Phys., Vol. 47, No. 6, 10, 2009.

    27. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Dielectric slab photonic crystals containing metallic components for E polarization mode," Appl. Phys. Rev., Vol. 2, No. 2, 2010.

    28. Nenninger, G. G., P. Tobiska, J. Homola, and S. S. Yee, "Long-range surface plasmons for high-resolution surface plasmon resonance sensors," Sensors Actuators B Chem., Vol. 74, No. 1-3, 145-151, Apr. 2001.
    doi:10.1016/S0925-4005(00)00724-3

    29. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuators B Chem., Vol. 54, No. 1-2, 3-15, Jan. 1999.

    30. Tiwari, K., S. C. Sharma, and N. Hozhabri, "High performance surface plasmon sensors: Simulations and measurements," J. Appl. Phys., Vol. 118, No. 9, 93105, Sep. 2015.

    31. Homola, J. and Ed., Surface Plasmon Resonance Based Sensors, Vol. 4, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

    32. Laude, V., Y. Achaoui, S. Benchabane, and A. Khelif, "Plane wave expansion method for phononic crystals: Review and prospects,", 2009.

    33. Ferre-Borrull, J., E. Xifre-Perez, M. Lluis, F. Marsal, and J. Pallares, "Real metals in metallo-dielectric photonic crystals in the visible," 2007 Spanish Conference on Electron Devices, 4, 2007.

    34. Reinhard, B., G. Torosyan, and R. Beigang, "Band structure of terahertz metallic photonic crystals with high metal filling factor," Appl. Phys. Lett., Vol. 92, No. 20, 2059, 2008.

    35. Zhang, J., L. Cai, W. Bai, and G. Song, "Flat surface plasmon polariton bands in Bragg grating waveguide for slow light," J. Light. Technol., Vol. 28, No. 14, 2030-2036, Jul. 2010.

    36. Gadot, F., A. de Lustrac, J.-M. Lourtioz, T. Brillat, A. Ammouche, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," J. Appl. Phys., Vol. 85, No. 12, 8499-8501, May 1999.

    37. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Effective plasma frequency for two-dimensional metallic photonic crystals," Progress In Electromagnetics Research M, Vol. 12, No. 1, 67-79, 2010.

    38. Low, K. L., M. Z. Mat Jafri, and S. A. Khan, "An investigation of surface plasmon effects on metallic photonic crystals in H polarization," The 8th International Conference on Metamaterials, Photonic Crystals and Plasmonics, 2017.

    39. Kittel, C., Introduction to Solid State Physics, Wiley, 2005.

    40. Sakoda, K., Optical Properties of Photonic Crystals, 2005.

    41. Qiu, M. and S. He, "Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions," Phys. Rev. B, Vol. 61, No. 19, 6, 2000.