Vol. 81

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-02-19

Estimation of Motion Parameters with Dual-Frequency InSAR Imaging Technique

By Kai-Shiun Yang, Po-Chih Chen, and Jean-Fu Kiang
Progress In Electromagnetics Research C, Vol. 81, 161-169, 2018
doi:10.2528/PIERC17110601

Abstract

A dual-frequency InSAR imaging technique is proposed to estimate the position and motion parameters of a moving target, including velocity and cross-track acceleration. By applying a dual-frequency technique, phase ambiguity is effectively removed to obtain accurate estimation of motion parameters.

Citation


Kai-Shiun Yang, Po-Chih Chen, and Jean-Fu Kiang, "Estimation of Motion Parameters with Dual-Frequency InSAR Imaging Technique," Progress In Electromagnetics Research C, Vol. 81, 161-169, 2018.
doi:10.2528/PIERC17110601
http://jpier.org/PIERC/pier.php?paper=17110601

References


    1. Perry, R. P., R. C. Dipietro, and R. L. Fante, "SAR imaging of moving targets," IEEE Trans. Aero. Electron. Syst., Vol. 35, 188-200, 1999.
    doi:10.1109/7.745691

    2. Jungang, Y., H. Xiaotao, J. Tian, J. Thompson, and Z. Zhimin, "New approach for SAR imaging of ground moving targets based on a keystone transform," IEEE Geosci. Remote Sensing Lett., Vol. 8, 829-833, 2011.
    doi:10.1109/LGRS.2011.2118739

    3. Huang, P., G. Liao, Z. Yang, X. G. Xia, J. Ma, and J. Zheng, "Ground maneuvering target imaging and high-order motion parameter estimation based on second-order keystone and generalized Hough-HAF transform," IEEE Trans. Geosci. Remote Sensing, Vol. 55, 320-335, 2017.
    doi:10.1109/TGRS.2016.2606436

    4. Yang, J. and Y. Zhang, "An airborne SAR moving target imaging and motion parameters estimation algorithm with azimuth-dechirping and the second-order keystone transform applied," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 8, 3967-3976, 2015.
    doi:10.1109/JSTARS.2015.2426504

    5. Li, G., X. G. Xia, and Y. N. Peng, "Doppler keystone transform for SAR imaging of moving targets," IEEE Cong. Image Signal Process., Vol. 4, 716-719, 2008.
    doi:10.1109/CISP.2008.600

    6. Yang, J., C. Liu, and Y. Wang, "Imaging and parameter estimation of fast-moving targets with single-antenna SAR," IEEE Geosci. Remote Sensing Lett., Vol. 11, 529-533, 2014.
    doi:10.1109/LGRS.2013.2271691

    7. Yang, J., C. Liu, and Y. Wang, "Detection and imaging of ground moving targets with real SAR data," IEEE Trans. Geosci. Remote Sensing, Vol. 53, 920-932, 2015.
    doi:10.1109/TGRS.2014.2330456

    8. Xu, R., D. Zhang, D. Hu, X. Qiu, and C. Ding, "A novel motion parameter estimation algorithm of fast moving targets via single-antenna airborne SAR system," IEEE Geosci. Remote Sensing Lett., Vol. 9, 920-924, 2012.
    doi:10.1109/LGRS.2012.2185778

    9. Zhang, X., G. Liao, S. Zhu, C. Zeng, and Y. Shu, "Geometry-information-aided efficient radial velocity estimation for moving target imaging and location based on Radon transform," IEEE Trans. Geosci. Remote Sensing, Vol. 53, 1105-1117, 2015.
    doi:10.1109/TGRS.2014.2334322

    10. Arii, M., "Efficient motion compensation of a moving object on SAR imagery based on velocity correlation function," IEEE Trans. Geosci. Remote Sensing, Vol. 52, 936-946, 2014.
    doi:10.1109/TGRS.2013.2245901

    11. Barbarossa, S. and V. Petrone, "Analysis of polynomial-phase signals by the integrated generalized ambiguity function," IEEE Trans. Signal Process., Vol. 45, 316-327, 1997.
    doi:10.1109/78.554297

    12. Barbarossa, S., A. Scaglione, and G. B. Giannakis, "Product high-order ambiguity function for multicomponent polynomial-phase signal modeling," IEEE Trans. Signal Process., Vol. 46, 691-708, 1998.
    doi:10.1109/78.661336

    13. Zhou, F., R. Wu, M. Xing, and Z. Bao, "Approach for single channel SAR ground moving target imaging and motion parameter estimation," IET Radar Sonar Navig., Vol. 1, 59-66, 2007.
    doi:10.1049/iet-rsn:20060040

    14. Sun, H. B., G. S. Liu, H. Gu, and W. M. Su, "Application of the fractional Fourier transform to moving target detection in airborne SAR," IEEE Trans. Aero. Electron. Syst., Vol. 38, 1416-1424, 2002.
    doi:10.1109/TAES.2002.1008986

    15. Ruegg, M., E. Meier, and D. Nuesch, "Capabilities of dual-frequency millimeter wave SAR with monopulse processing for ground moving target indication," IEEE Trans. Geosci. Remote Sensing, Vol. 45, 539-553, 2007.
    doi:10.1109/TGRS.2006.888464

    16. Zhu, S., G. Liao, Y. Qu, X. Liu, and Z. Zhou, "A new slant-range velocity ambiguity resolving approach of fast moving targets for SAR system," IEEE Trans. Geosci. Remote Sensing, Vol. 48, 432-451, 2010.
    doi:10.1109/TGRS.2009.2027698

    17. Feng, Y., "GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals," J. Geodesy., Vol. 82, 847-862, 2008.
    doi:10.1007/s00190-008-0209-x

    18. Baumgartner, S. V. and G. Krieger, "Acceleration-independent along-track velocity estimation of moving targets," IET Radar Sonar Navig., Vol. 4, 474-487, 2010.
    doi:10.1049/iet-rsn.2009.0030