Vol. 81

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-01-31

An Inset-Fed Rectangular Microstrip Patch Antenna with Multiple Split Ring Resonator Loading for WLAN and RF-ID Applications

By Nambiyappan Thamil Selvi, Ramasamy Pandeeswari, and Palavesa Nadar Thiruvalar Selvan
Progress In Electromagnetics Research C, Vol. 81, 41-52, 2018
doi:10.2528/PIERC17110102

Abstract

In this paper, the analysis and design of a compact Multiple Split Ring Resonator (MSRR) inspired microstrip rectangular patch antenna is presented. The MSRR is used with four rings. The size of the antenna is 25 × 31 × 1.6 mm3 realized on a low cost FR4 substrate. The proposed rectangular microstrip patch antenna operates at the resonant frequency of 5.88 GHz prior to MSRR inclusion. The antenna characteristics are studied before and after inclusion of metamaterial. After including MSRRs at appropriate places, the proposed MSRR antenna induces a new resonant frequency of 2.78 GHz. In addition to rectangular patch's fundamental resonance, the additional resonance is obtained at 2.78 GHz, thus, exhibits dual bands. Hence, MSRR loading antenna attains a bandwidth of 197 MHz at 2.78 GHz and 703 MHz at 5.88 GHz. The prototype of the proposed antenna is fabricated and measured. Simulated results are verified with the measured ones. This proposed antenna can be effectively utilized for WLAN and RF-ID applications. Parametric studies are illustrated to yield the desired frequency bands. Equivalent circuit model analysis of the MSRR loading is determined. Band characteristics of split ring structure are used to determine the negative permeability characteristics.

Citation


Nambiyappan Thamil Selvi, Ramasamy Pandeeswari, and Palavesa Nadar Thiruvalar Selvan, "An Inset-Fed Rectangular Microstrip Patch Antenna with Multiple Split Ring Resonator Loading for WLAN and RF-ID Applications," Progress In Electromagnetics Research C, Vol. 81, 41-52, 2018.
doi:10.2528/PIERC17110102
http://jpier.org/PIERC/pier.php?paper=17110102

References


    1. Si, L. M., W. Zhu, and H. J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna," IEEE Antennas Wireless Propagation. Letters, Vol. 12, 305-308, 2013.
    doi:10.1109/LAWP.2013.2249037

    2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp, Vol. 10, 509-14, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    3. Christophe, C. and I. Tatsuo, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, New York, 2005.

    4. Marques, R., F. Martina, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Wiley-Inter Science, 2007.
    doi:10.1002/9780470191736

    5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetismfrom conductors and enhanced nolinear phenomena," IEEE Transactions on Microwave Theory Technology, Vol. 47, 2075-2084, 1999.
    doi:10.1109/22.798002

    6. Smith, D. R., D. C. Viker, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Applied Physics Letters, Vol. 77, 2246-2248, 2000.
    doi:10.1063/1.1314884

    7. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physics Review Letters, Vol. 84, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    8. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alice, and E. Ozbay, "Equivalent circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions on Microwave Theory Technology, Vol. 55, 2865-2872, 2007.
    doi:10.1109/TMTT.2007.909611

    9. Dong, Y. and T. Itoh, "Metamaterial-based antennas," Proceedings of the IEEE, Vol. 100, No. 7, 2271-2285, 2012.
    doi:10.1109/JPROC.2012.2187631

    10. Si, L.-M., H.-J. Sun, Y. Yuan, and X. Lv, "CPW-fed compact planar UWB antenna with circular disc and spiral split ring resonators," PIERS Proceedings, 502-505, Beijing, China, March 23-27, 2009.

    11. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, 2388-2392, 2014.
    doi:10.1002/mop.28602

    12. Ji, J. K., G. H. Kim, and W. M. Seong, "Bandwidth enhancement of metamaterial antennas based on composite right/left handed transmission line," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 36-39, 2010.
    doi:10.1109/LAWP.2010.2041628

    13. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, 292-296, 2015.
    doi:10.1002/mop.28835

    14. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Frequency switching of electrically small patch antenna using metamaterial loading," Indian Journal of Radio & Space Physics, Vol. 40, 159-165, June 2011.

    15. Basaran, S. C. and K. Sertel, "Multiband monopole antenna with complementary split ring resonators for WLAN and WiMAX applications," Electron Letters, Vol. 49, No. 10, 636-638, 2013.
    doi:10.1049/el.2013.0357

    16. Liu, H.-W., C.-H. Ku, and C.-F. Yang, "Novel CPW-fed planar monopole antenna for WiMAX/WLAN applications," IEEE Antennas Wireless Propagation. Letters, Vol. 9, 240-243, 2010.
    doi:10.1109/LAWP.2010.2044860

    17. Yang, K., H. Wang, Z. Lei, Y. Xie, and H. Lai, "CPW-fed slot antenna with triangular SRR terminated feed line for WLAN/WiMAX applications," Electronics Letters, Vol. 47, 685-686, 2011.
    doi:10.1049/el.2011.1232

    18. Quan, X. L., R. L. Li, Y. H. Cui, and M. M. Tentzeris, "Analysis and design of a compact dual-band directional antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 547-550, 2012.
    doi:10.1109/LAWP.2012.2199458

    19. Pandeeswari, R. and S. Raghavan, "A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and Wi-Max applications," Microwave and Optical Technology Letters, Vol. 57, 2413-2418, 2015.
    doi:10.1002/mop.29352

    20. Sharma, S. K. and R. K. Chaudhary, "Dual-band metamaterial-inspired antenna for Mobile applications," Microwave and Optical Technology Letters, Vol. 57, 1444-1447, 2015.
    doi:10.1002/mop.29113

    21. Rajeshkumar, V. and S. Raghavan, "A compact asymmetric monopole antenna with electrically coupled SRR for WiMAX/WLAN/UWB applications," Microwave and Optical Technology Letters, Vol. 57, 2194-2197, 2015.
    doi:10.1002/mop.29298

    22. Imaculate Rosaline, S. and S. Raghavan, "A compact dual band antenna with an ENG SRR cover for SAR reduction," Microwave and Optical Technology Letters, Vol. 57, 741-747, 2015.
    doi:10.1002/mop.28941

    23. Rajeshkumar, V. and S. Raghavan, "Trapezoidal ring quad-band fractal antenna for WLAN/WIMAX applications," Microwave and Optical Technology Letters, Vol. 56, 2545-2548, 2014.
    doi:10.1002/mop.28631

    24. Kaur, J. and R. Khanna, "Development of dual-band microstrip patch antenna for WLAN/MIMO/WIMAX/ AMSAT/WAVE applications," Microwave and Optical Technology Letters, Vol. 56, 988-993, 2014.
    doi:10.1002/mop.28206

    25. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, 2388-2392, 2014.
    doi:10.1002/mop.28602

    26. Balanis, C. A., Modern Antenna Handbook, John Wiley and Sons, Inc., 2005.

    27. Matin, M. A. and A. I. Sayeed, "A design rule for inset-fed rectangular microstrip patch antenna," WSEAS Transactions on Communications, Vol. 9, No. 1, 2010.

    28. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Review B, Vol. 65, 195104-195109, 2002.
    doi:10.1103/PhysRevB.65.195104

    29. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
    doi:10.1126/science.1058847

    30. Chen, H., J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Optical Express, Vol. 14, 12944-12949, 2006.
    doi:10.1364/OE.14.012944