Vol. 80
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-12-01
Complimentary Split Ring Resonator Inspired Meandered CPW-Fed Monopole Antenna for Multiband Operation
By
Progress In Electromagnetics Research C, Vol. 80, 13-20, 2018
Abstract
A novel design of Meandered Coplanar waveguide (CPW) fed CSRR loaded multiband antenna is presented in this paper. A compact triple band antenna is designed by etching CSRR slots on the radiating element. The proposed antenna shows good performance at all resonant frequencies. The simulation results are discussed and compared with the measured ones. The effects of CSRR loading on the radiating element are explained. Parametric studies are carried out and explained in detail. The proposed antenna is fabricated and measured, and the results are compared with the simulated ones. CSRR permittivity characteristics are explained to validate the results. The proposed antenna can be used for C-band, Wireless Local Area Network (WLAN) and International Telecommunications Union (ITU) applications.
Citation
Ramasamy Pandeeswari, "Complimentary Split Ring Resonator Inspired Meandered CPW-Fed Monopole Antenna for Multiband Operation," Progress In Electromagnetics Research C, Vol. 80, 13-20, 2018.
doi:10.2528/PIERC17101402
References

1. Rengasamy, R. and U. K. Kommuri, "A compact ACS-fed mirrored L-shaped monopole antenna with SRR loaded for multiband operation," Progress In Electromagnetics Research C, Vol. 64, 159-167, 2016.
doi:10.2528/PIERC16031501

2. Arora, C., S. S. Pattnaik, and R. N. Baral, "SRR inspired microstrip patch antenna array," Progress In Electromagnetic Research C, Vol. 58, 89-96, 2015.
doi:10.2528/PIERC15052501

3. Li, B., B. Wu, and C.-H. Liang, "Study on high gain circular waveguide array antenna with metamaterial structure," Progress In Electromagnetics Research, Vol. 60, 207-219, 2006.
doi:10.2528/PIER05121101

4. Datta, R., T. Shaw, and D. Mitra, "Miniaturization of microstrip Yagi array antenna using metamaterial," Progress In Electromagnetics Research C, Vol. 72, 151-158, 2017.
doi:10.2528/PIERC16122102

5. Pandeeswari, R., S. Raghavan, and K. Ramesh, "A compact split ring resonator loaded antenna," PIERS Proceedings, 37-40, Moscow, Russia, Aug. 19–23, 2012.

6. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of e and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

7. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, New York, 2005.
doi:10.1002/0471754323

8. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcfa-Farcfa, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 53, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211

9. Mookiah, P. and K. R. Dandekar, "Metamaterial-substrate antenna array for MIMO communication system," IEEE Trans. Antennas Propag., Vol. 57, 3283-3292, 2009.
doi:10.1109/TAP.2009.2028638

10. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014.
doi:10.1002/mop.28602

11. Attia, H., L. Yousefi, M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, "Enhanced gain microstrip antenna using engineered magnetic superstrates," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1198-1201, 2011.

12. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, No. 2, 292-296, 2015.
doi:10.1002/mop.28835

13. Pandeeswari, R. and S. Raghavan, "Meandered CPW-fed hexagonal split ring resonator monopole antenna for 5.8 GHz RFID applications," Microwave and Optical Technology Letters, Vol. 57, 681-684, Wiley Interscience, USA, 2015.

14. Pandeeswari, R. and S. Raghavan, "A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WIMAX applications," Microwave and Optical Technology Letters, Vol. 57, 2413-2418, Wiley Interscience, USA, 2015.

15. Martınez, F. J. H., G. Zamora, F. Paredes, F. Martın, and J. Bonache, "Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs," IEEE Antennas Wireless Propagation Letters, Vol. 10, 1528-1531, 2011.
doi:10.1109/LAWP.2011.2181309

16. Boopathi, R. and S. K. Pandey, "CSRR inspired conductor backed CPW-fed monopole antenna for multiband operation," Progress In Electromagnetic Research C, Vol. 70, 135-143, 2016.

17. Ziolkoski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1516-1529, Jul. 2003.
doi:10.1109/TAP.2003.813622

18. Liu, N.-W., L. Yang, Z.-Y. Zhang, G. Fu, and Q.-Q. Liu, "A novel face-like triple-band antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 45, 105-110, 2014.
doi:10.2528/PIERL14031801

19. Pei, J., A.-G. Wang, S. Gao, and W. Leng, "Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 298-301, 2011.