Vol. 79

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-11-26

Development of an Improved Response Ultra-Wideband Antenna Based on Conductive Adhesive of Carbon Composite

By Erick Reyes-Vera, Mauricio Arias-Correa, Andres Giraldo-Muno, Daniel Catano-Ochoa, and Juan Santa-Marin
Progress In Electromagnetics Research C, Vol. 79, 199-208, 2017
doi:10.2528/PIERC17091809

Abstract

Ultra-wideband (UWB) antennas have advantages such as high data rates, improved multipath resistance and lower power consumption. In this work, UWB patch antennas based on electrically conductive adhesive were manufactured with a simple technique and evaluated in the laboratory. Results showed that the thickness of the samples ranged from 207 to 261 μm. The bandwidth optimization obtained was 200% compared to a traditional copper-layer antenna. UWB antennas showed an average bandwidth of 8.558 GHz in the region 609 MHz to 9.105 GHz. The antennas covered the whole of UHF band, L band, S band, C band and part of X band. Finally, the proposed technique allows reducing the size of patch by 70% for low frequencies of operation, while achieving a similar performance.

Citation


Erick Reyes-Vera, Mauricio Arias-Correa, Andres Giraldo-Muno, Daniel Catano-Ochoa, and Juan Santa-Marin, "Development of an Improved Response Ultra-Wideband Antenna Based on Conductive Adhesive of Carbon Composite," Progress In Electromagnetics Research C, Vol. 79, 199-208, 2017.
doi:10.2528/PIERC17091809
http://jpier.org/PIERC/pier.php?paper=17091809

References


    1. Tariqul, M. and R. Azim, "Recent trends in printed Ultra-Wideband (UWB) antennas," Advancement in Microstrip Antennas with Recent Applications, InTech, 2013.

    2. Chi, Y. J. and F. C. Chen, "On-body adhesive-bandage-like antenna for wireless medical telemetry service," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2472-2480, 2014.
    doi:10.1109/TAP.2014.2308918

    3. Ho, C. K., T. S. P. See, and M. R. Yuce, "An ultra-wideband wireless body area network: Evaluation in static and dynamic channel conditions," Sensors Actuators A Phys., Vol. 180, 137-147, Jun. 2012.
    doi:10.1016/j.sna.2012.03.046

    4. Islam, M. T., M. Samsuzzaman, M. R. I. Faruque, and M. M. Islam, "Compact metamaterial antenna for UWB applications," Electron. Lett., Vol. 51, No. 16, 1222-1224, 2015.
    doi:10.1049/el.2015.2131

    5. Ferreira, D. B., C. B. de Paula, and D. C. Nascimento, "Design techniques for conformal microstrip antennas and their arrays," Advancement in Microstrip Antennas with Recent Applications, InTech, 2013.

    6. Thi, T. N., S. Trinh-Van, G. Kwon, and K. C. Hwang, "Single-feed triple-band circularly polarized spidron fractal slot antenna," Progress In Electromagnetics Research, Vol. 143, 207-221, 2013.
    doi:10.2528/PIER13090501

    7. Lai, H. W., K. M. Mak, and K. F. Chan, "Novel aperture-coupled microstrip-line feed for circularly polarized patch antenna," Progress In Electromagnetics Research, Vol. 144, 1-9, 2014.
    doi:10.2528/PIER13101803

    8. Chen, L., X.-S. Ren, Y.-Z. Yin, and Z. Wang, "Broadband CPW-fed circularly polarized antenna with an irregular slot for 2.45 GHz RFID reader," Progress In Electromagnetics Research Letters, Vol. 41, 77-86, 2013.
    doi:10.2528/PIERL13052020

    9. Zuo, S., Q.-Q. Liu, and Z.-Y. Zhang, "Wideband dual-polarized crossed-dipole antenna with parasitical crossed-strip for base station applications," Progress In Electromagnetics Research C, Vol. 48, 159-166, 2014.
    doi:10.2528/PIERC14021101

    10. Singh, H. S., G. K. Pandey, M. K. Meshram, and P. K. Bharti, "Metamaterial-based UWB antenna," Electron. Lett., Vol. 50, No. 18, 1266-1268, 2014.
    doi:10.1049/el.2014.2366

    11. Dai, Y., B. Yuan, G. Luo, and X. Zhang, "Ultra-wideband patch antenna with metamaterial structures," 2015 IEEE 16th International Conference on Communication Technology (ICCT), No. c, 403-404, 2015.

    12. Perruisseau-Carrier, J., "Graphene for antenna applications: Opportunities and challenges from microwaves to THz," 2012 Loughbrgh. Antennas Propag. Conf., 1-4, Nov. 2012.

    13. Mehdipour, A., A. R. Sebak, C. W. Trueman, I. D. Rosca, and S. V. Hoa, "Advanced conductive carbon fiber composite materials for antenna and microwave applications," 2012 IEEE Antennas Propag. Soc. Int. Symp. (APSURSI), Vol. 1, No. c, 1-2, 2012.

    14. Zhu, F., et al., "Ultra-wideband dual-polarized patch antenna with four capacitively coupled feeds," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2440-2449, 2014.
    doi:10.1109/TAP.2014.2308524

    15. Valagiannopoulos, C. A., "On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder," Progress In Electromagnetics Research C, Vol. 3, 203-214, 2008.
    doi:10.2528/PIERC08042906

    16. Valagiannopoulos, C. A., "Single-series solution to the radiation of loop antenna in the presence of a conducting sphere," Progress In Electromagnetics Research, Vol. 71, 277-294, 2007.
    doi:10.2528/PIER07030803

    17. Valagiannopoulos, C. A., "High selectivity and controllability of a parallel-plate component with a filled rectangular ridge," Progress In Electromagnetics Research, Vol. 119, 497-511, 2011.
    doi:10.2528/PIER11062603

    18. Valagiannopoulos, C. A., "A novel methodology for estimating the permittivity of a specimen rod at low radio frequencies," Journal of Electromagnetic Waves & Applications, Vol. 24, No. 5–6, 631-640, 2010.
    doi:10.1163/156939310791036331

    19. Catano-Ochoa, D., D. E. Senior, F. Lopez, and E. Reyes-Vera, "Performance analysis of a microstrip patch antenna loaded with an array of metamaterial resonators," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 281-282, 2016.
    doi:10.1109/APS.2016.7695849

    20. Castellanos, L. M., F. Lopez, and E. Reyes-Vera, "Metamateriales: Principales caracter´ısticas y aplicaciones," Rev. la Acad. Colomb. Ciencias Exactas, Fısicas y Nat., Vol. 40, No. 156, 395, Oct. 2016.
    doi:10.18257/raccefyn.345

    21. Acevedo-Osorio, G., H. Munoz Ossa, and E. Reyes-Vera, "Performance analysis of monopole excited split ring resonator for permittivity characterization," 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2, 2017.

    22. Hotopan, G. R., S. Ver-Hoeye, C. Vazquez-Antuna, A. Hadarig, R. Camblor-Diaz, M. Fernandez- Garcia, and F. Las Heras Andres, "Millimeter wave subharmonic mixer implementation using graphene film coating," Progress In Electromagnetics Research, Vol. 140, 781-794, 2013.
    doi:10.2528/PIER13042408

    23. Leng, T., X. Huang, K. Chang, J. Chen, M. A. Abdalla, and Z. Hu, "Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1565-1568, 2016.
    doi:10.1109/LAWP.2016.2518746

    24. Tadakaluru, S., W. Thongsuwan, and P. Singjai, "Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber," Sensors (Basel), Vol. 14, No. 1, 868-76, Jan. 2014.
    doi:10.3390/s140100868

    25. Trueman, C.W., A. Sebak, T. A. Denidni, S. V Hoa, A. Mehdipour, and I. D. Rosca, "Mechanically reconfigurable antennas using an anisotropic carbon-fibre composite ground," IET Microwaves, Antennas Propag., Vol. 7, No. 13, 1055-1063, Oct. 2013.

    26. Mehdipour, A., I. D. Rosca, A. R. Sebak, C. W. Trueman, and S. V. Hoa, "Carbon nanotube composites for wideband millimeter-wave antenna applications," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3572-3578, 2011.
    doi:10.1109/TAP.2011.2163755

    27. De Assis, R. R. and I. Bianchi, "Analysis of microstrip antennas on carbon fiber composite material," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 11, No. 1, 154-161, Jun. 2012.
    doi:10.1590/S2179-10742012000100013

    28. Rmili, H., J.-L. Miane, H. Zangar, and T. Olinga, "Design of microstrip-fed proximity-coupled conducting-polymer patch antenna," Microw. Opt. Technol. Lett., Vol. 48, No. 4, 655-660, Apr. 2006.
    doi:10.1002/mop.21435

    29. Mehdipour, A., T. A. Denidni, A. Sebak, and C. W. Trueman, "Reconfigurable TX/RX antenna systems loaded by anisotropic conductive carbon-fiber composite materials," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 1002-1006, Feb. 2014.
    doi:10.1109/TAP.2013.2293784

    30. Khaleel, H. R., H. M. Al-Rizzo, D. G. Rucker, and S. Mohan, "A compact polyimide-based UWB antenna for flexible electronics," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 564-567, 2012.
    doi:10.1109/LAWP.2012.2199956

    31. Brosseau, C., et al., "Dielectric and microstructure properties of polymer carbon black composites," J. Appl. Phys., Vol. 81, No. 2, 882-891, Jan. 1997.
    doi:10.1063/1.364173

    32. Song, T. Q., Y. Zhou, and L. X. Ma, "Study on relationship between carbon black and dielectric properties of tire rubber in UHF band," Appl. Mech. Mater., Vol. 536–537, 1456-1459, 2014.
    doi:10.4028/www.scientific.net/AMM.536-537.1456

    33. Bao, Y., et al., "Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structures," J. Mater. Sci., Vol. 48, No. 14, 4892-4898, Jul. 2013.
    doi:10.1007/s10853-013-7269-x

    34. Lawandy, S. N., S. F. Halim, and N. A. Darwish, "Structure aggregation of carbon black in ethylenepropylene diene polymer," Express Polym. Lett., Vol. 3, No. 3, 152-158, 2009.
    doi:10.3144/expresspolymlett.2009.20

    35. Mehdipour, A., I. D. Rosca, C. W. Trueman, A. R. Sebak, and S. Van Hoa, "Multiwall carbon nanotube-epoxy composites with high shielding effectiveness for aeronautic applications," IEEE Trans. Electromagn. Compat., Vol. 54, No. 1, 28-36, 2012.
    doi:10.1109/TEMC.2011.2174241

    36. Kowalik, T., M. Amkreutz, C. Harves, A. Hartwig, and S. J. Aßhoff, "Conductive adhesives with self-organized silver particles," IOP Conf. Ser. Mater. Sci. Eng., Vol. 40, 12033, Sep. 2012.
    doi:10.1088/1757-899X/40/1/012033

    37. Li, M. and C. Yang, "Conductive adhesives as the ultralow cost RFID tag antenna material," Current Trends and Challenges in RFID, InTech, 2011.

    38. Zois, H., L. Apekis, and M. Omastova, "Electrical properties of carbon black-filled polymer composites," Macromol. Symp., Vol. 170, No. 1, 249-256, Jun. 2001.
    doi:10.1002/1521-3900(200106)170:1<249::AID-MASY249>3.0.CO;2-F

    39. Lobato-Morales, H., A. Corona-Chavez, J. L. Olvera-Cervantes, R. A. Chavez-Perez, and J. L. Medina-Monroy, "Wireless sensing of complex dielectric permittivity of liquids based on the RFID," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 9, 2160-2167, Sep. 2014.
    doi:10.1109/TMTT.2014.2333711

    40. Saini, A., A. Thakur, and P. Thakur, "Effective permeability and miniaturization estimation of ferrite-loaded microstrip patch antenna," J. Electron. Mater., Vol. 45, No. 8, 4162-4170, Aug. 2016.
    doi:10.1007/s11664-016-4634-y