Vol. 79

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Development of an Improved Response Ultra-Wideband Antenna Based on Conductive Adhesive of Carbon Composite

By Erick Reyes-Vera, Mauricio Arias-Correa, Andres Giraldo-Muno, Daniel Catano-Ochoa, and Juan Santa-Marin
Progress In Electromagnetics Research C, Vol. 79, 199-208, 2017


Ultra-wideband (UWB) antennas have advantages such as high data rates, improved multipath resistance and lower power consumption. In this work, UWB patch antennas based on electrically conductive adhesive were manufactured with a simple technique and evaluated in the laboratory. Results showed that the thickness of the samples ranged from 207 to 261 μm. The bandwidth optimization obtained was 200% compared to a traditional copper-layer antenna. UWB antennas showed an average bandwidth of 8.558 GHz in the region 609 MHz to 9.105 GHz. The antennas covered the whole of UHF band, L band, S band, C band and part of X band. Finally, the proposed technique allows reducing the size of patch by 70% for low frequencies of operation, while achieving a similar performance.


Erick Reyes-Vera, Mauricio Arias-Correa, Andres Giraldo-Muno, Daniel Catano-Ochoa, and Juan Santa-Marin, "Development of an Improved Response Ultra-Wideband Antenna Based on Conductive Adhesive of Carbon Composite," Progress In Electromagnetics Research C, Vol. 79, 199-208, 2017.


    1. Tariqul, M. and R. Azim, "Recent trends in printed Ultra-Wideband (UWB) antennas," Advancement in Microstrip Antennas with Recent Applications, InTech, 2013.

    2. Chi, Y. J. and F. C. Chen, "On-body adhesive-bandage-like antenna for wireless medical telemetry service," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2472-2480, 2014.

    3. Ho, C. K., T. S. P. See, and M. R. Yuce, "An ultra-wideband wireless body area network: Evaluation in static and dynamic channel conditions," Sensors Actuators A Phys., Vol. 180, 137-147, Jun. 2012.

    4. Islam, M. T., M. Samsuzzaman, M. R. I. Faruque, and M. M. Islam, "Compact metamaterial antenna for UWB applications," Electron. Lett., Vol. 51, No. 16, 1222-1224, 2015.

    5. Ferreira, D. B., C. B. de Paula, and D. C. Nascimento, "Design techniques for conformal microstrip antennas and their arrays," Advancement in Microstrip Antennas with Recent Applications, InTech, 2013.

    6. Thi, T. N., S. Trinh-Van, G. Kwon, and K. C. Hwang, "Single-feed triple-band circularly polarized spidron fractal slot antenna," Progress In Electromagnetics Research, Vol. 143, 207-221, 2013.

    7. Lai, H. W., K. M. Mak, and K. F. Chan, "Novel aperture-coupled microstrip-line feed for circularly polarized patch antenna," Progress In Electromagnetics Research, Vol. 144, 1-9, 2014.

    8. Chen, L., X.-S. Ren, Y.-Z. Yin, and Z. Wang, "Broadband CPW-fed circularly polarized antenna with an irregular slot for 2.45 GHz RFID reader," Progress In Electromagnetics Research Letters, Vol. 41, 77-86, 2013.

    9. Zuo, S., Q.-Q. Liu, and Z.-Y. Zhang, "Wideband dual-polarized crossed-dipole antenna with parasitical crossed-strip for base station applications," Progress In Electromagnetics Research C, Vol. 48, 159-166, 2014.

    10. Singh, H. S., G. K. Pandey, M. K. Meshram, and P. K. Bharti, "Metamaterial-based UWB antenna," Electron. Lett., Vol. 50, No. 18, 1266-1268, 2014.

    11. Dai, Y., B. Yuan, G. Luo, and X. Zhang, "Ultra-wideband patch antenna with metamaterial structures," 2015 IEEE 16th International Conference on Communication Technology (ICCT), No. c, 403-404, 2015.

    12. Perruisseau-Carrier, J., "Graphene for antenna applications: Opportunities and challenges from microwaves to THz," 2012 Loughbrgh. Antennas Propag. Conf., 1-4, Nov. 2012.

    13. Mehdipour, A., A. R. Sebak, C. W. Trueman, I. D. Rosca, and S. V. Hoa, "Advanced conductive carbon fiber composite materials for antenna and microwave applications," 2012 IEEE Antennas Propag. Soc. Int. Symp. (APSURSI), Vol. 1, No. c, 1-2, 2012.

    14. Zhu, F., et al., "Ultra-wideband dual-polarized patch antenna with four capacitively coupled feeds," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2440-2449, 2014.

    15. Valagiannopoulos, C. A., "On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder," Progress In Electromagnetics Research C, Vol. 3, 203-214, 2008.

    16. Valagiannopoulos, C. A., "Single-series solution to the radiation of loop antenna in the presence of a conducting sphere," Progress In Electromagnetics Research, Vol. 71, 277-294, 2007.

    17. Valagiannopoulos, C. A., "High selectivity and controllability of a parallel-plate component with a filled rectangular ridge," Progress In Electromagnetics Research, Vol. 119, 497-511, 2011.

    18. Valagiannopoulos, C. A., "A novel methodology for estimating the permittivity of a specimen rod at low radio frequencies," Journal of Electromagnetic Waves & Applications, Vol. 24, No. 5–6, 631-640, 2010.

    19. Catano-Ochoa, D., D. E. Senior, F. Lopez, and E. Reyes-Vera, "Performance analysis of a microstrip patch antenna loaded with an array of metamaterial resonators," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 281-282, 2016.

    20. Castellanos, L. M., F. Lopez, and E. Reyes-Vera, "Metamateriales: Principales caracter´ısticas y aplicaciones," Rev. la Acad. Colomb. Ciencias Exactas, Fısicas y Nat., Vol. 40, No. 156, 395, Oct. 2016.

    21. Acevedo-Osorio, G., H. Munoz Ossa, and E. Reyes-Vera, "Performance analysis of monopole excited split ring resonator for permittivity characterization," 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2, 2017.

    22. Hotopan, G. R., S. Ver-Hoeye, C. Vazquez-Antuna, A. Hadarig, R. Camblor-Diaz, M. Fernandez- Garcia, and F. Las Heras Andres, "Millimeter wave subharmonic mixer implementation using graphene film coating," Progress In Electromagnetics Research, Vol. 140, 781-794, 2013.

    23. Leng, T., X. Huang, K. Chang, J. Chen, M. A. Abdalla, and Z. Hu, "Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1565-1568, 2016.

    24. Tadakaluru, S., W. Thongsuwan, and P. Singjai, "Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber," Sensors (Basel), Vol. 14, No. 1, 868-76, Jan. 2014.

    25. Trueman, C.W., A. Sebak, T. A. Denidni, S. V Hoa, A. Mehdipour, and I. D. Rosca, "Mechanically reconfigurable antennas using an anisotropic carbon-fibre composite ground," IET Microwaves, Antennas Propag., Vol. 7, No. 13, 1055-1063, Oct. 2013.

    26. Mehdipour, A., I. D. Rosca, A. R. Sebak, C. W. Trueman, and S. V. Hoa, "Carbon nanotube composites for wideband millimeter-wave antenna applications," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3572-3578, 2011.

    27. De Assis, R. R. and I. Bianchi, "Analysis of microstrip antennas on carbon fiber composite material," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 11, No. 1, 154-161, Jun. 2012.

    28. Rmili, H., J.-L. Miane, H. Zangar, and T. Olinga, "Design of microstrip-fed proximity-coupled conducting-polymer patch antenna," Microw. Opt. Technol. Lett., Vol. 48, No. 4, 655-660, Apr. 2006.

    29. Mehdipour, A., T. A. Denidni, A. Sebak, and C. W. Trueman, "Reconfigurable TX/RX antenna systems loaded by anisotropic conductive carbon-fiber composite materials," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 1002-1006, Feb. 2014.

    30. Khaleel, H. R., H. M. Al-Rizzo, D. G. Rucker, and S. Mohan, "A compact polyimide-based UWB antenna for flexible electronics," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 564-567, 2012.

    31. Brosseau, C., et al., "Dielectric and microstructure properties of polymer carbon black composites," J. Appl. Phys., Vol. 81, No. 2, 882-891, Jan. 1997.

    32. Song, T. Q., Y. Zhou, and L. X. Ma, "Study on relationship between carbon black and dielectric properties of tire rubber in UHF band," Appl. Mech. Mater., Vol. 536–537, 1456-1459, 2014.

    33. Bao, Y., et al., "Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structures," J. Mater. Sci., Vol. 48, No. 14, 4892-4898, Jul. 2013.

    34. Lawandy, S. N., S. F. Halim, and N. A. Darwish, "Structure aggregation of carbon black in ethylenepropylene diene polymer," Express Polym. Lett., Vol. 3, No. 3, 152-158, 2009.

    35. Mehdipour, A., I. D. Rosca, C. W. Trueman, A. R. Sebak, and S. Van Hoa, "Multiwall carbon nanotube-epoxy composites with high shielding effectiveness for aeronautic applications," IEEE Trans. Electromagn. Compat., Vol. 54, No. 1, 28-36, 2012.

    36. Kowalik, T., M. Amkreutz, C. Harves, A. Hartwig, and S. J. Aßhoff, "Conductive adhesives with self-organized silver particles," IOP Conf. Ser. Mater. Sci. Eng., Vol. 40, 12033, Sep. 2012.

    37. Li, M. and C. Yang, "Conductive adhesives as the ultralow cost RFID tag antenna material," Current Trends and Challenges in RFID, InTech, 2011.

    38. Zois, H., L. Apekis, and M. Omastova, "Electrical properties of carbon black-filled polymer composites," Macromol. Symp., Vol. 170, No. 1, 249-256, Jun. 2001.

    39. Lobato-Morales, H., A. Corona-Chavez, J. L. Olvera-Cervantes, R. A. Chavez-Perez, and J. L. Medina-Monroy, "Wireless sensing of complex dielectric permittivity of liquids based on the RFID," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 9, 2160-2167, Sep. 2014.

    40. Saini, A., A. Thakur, and P. Thakur, "Effective permeability and miniaturization estimation of ferrite-loaded microstrip patch antenna," J. Electron. Mater., Vol. 45, No. 8, 4162-4170, Aug. 2016.