Vol. 80

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-12-02

Information Content in Inverse Source with Symmetry and Support Priors

By Raffaele Solimene, Maria Antonia Maisto, and Rocco Pierri
Progress In Electromagnetics Research C, Vol. 80, 39-54, 2018
doi:10.2528/PIERC17090903

Abstract

This paper illustrates how inverse source problems are a ected by certain symmetry and support priors concerning the source space. The study is developed for a prototype con guration where the field radiated by square integrable strip sources is observed in far-zone. Three symmetry priors are considered: the source is a priori known to be a real or Hermitian or even (resp. odd) function. Instead, as spatial priors we assume that the source support consists of a single or multiple disjoint domains. The role of the aforementioned priors is assessed against some metrics commonly used to characterise inverse source problems such as the number of degrees of freedom, the point-spread function and the ``information content'' measured through the Kolmogorov entropy.

Citation


Raffaele Solimene, Maria Antonia Maisto, and Rocco Pierri, "Information Content in Inverse Source with Symmetry and Support Priors," Progress In Electromagnetics Research C, Vol. 80, 39-54, 2018.
doi:10.2528/PIERC17090903
http://jpier.org/PIERC/pier.php?paper=17090903

References


    1. Soldovieri, F., C. Mola, R. Solimene, and R. Pierri, "Inverse source problem from the knowledge of radiated field over multiple rectilinear domains," Progress In Electromagnetics Research M, Vol. 8, 131-141, 2009.
    doi:10.2528/PIERM09062607

    2. Solimene, R., C. Mola, R. Pierri, and F. Soldovieri, "Inverse source problem: A comparison between the cases of electric and magnetic sources," Progress In Electromagnetics Research M, Vol. 20, 127-141, 2011.
    doi:10.2528/PIERM11070502

    3. Kantorovic, L. V. and G. P. Akilov, Functional Analysis, Pergamon Press, 1982.
    doi:10.1016/B978-0-08-023036-8.50011-4

    4. Bertero, M., "Linear inverse and ill-posed problems," Adv. Electron. Electron. Phys., Vol. 45, 1-120, 1989.

    5. Den Dekker, A. and A. van den Bos, "Resolution: A survey," J. Opt. Soc. Am. A, Vol. 14, 547-557, 1997.
    doi:10.1364/JOSAA.14.000547

    6. Jagerman, D., "ε-entropy and approximation of bandlimitated functions," SIAM J. Appl. Math., Vol. 17, 362-377, 1969.
    doi:10.1137/0117035

    7. Toraldo di Francia, G., "Degrees of freedom of an image," J. Opt. Soc. Am., Vol. 59, 799-804, 1969.
    doi:10.1364/JOSA.59.000799

    8. Piestun, R. and D. A. B. Miller, "Electromagnetic degrees of freedom of an optical system," J. Opt. Soc. Am. A, Vol. 17, 892-902, 2000.
    doi:10.1364/JOSAA.17.000892

    9. Newsam, G. and R. Barakat, "Essential dimension as a well-defined number of degrees of freedom of finite-convolution operators appearing in optics," J. Opt. Soc. Am. A, Vol. 2, 2040-2045, 1985.
    doi:10.1364/JOSAA.2.002040

    10. Kolmogorov, F. M. and V. M. Tikhomirov, "ε-entropy and ε-capacity of sets in functional spaces," Am. Math. Soc. Transl., Vol. 17, 277-364, 1961.

    11. Tikhonov, A. N. and V. I. Arsenine, Solution to Ill-posed Problems, Halsted, New York, 1977.

    12. De Micheli, E. and G. A. Viano, "Fredholm integral equations of the first kind and topological information theory," Integr. Equ. Oper. Theory, Vol. 73, 553-571, 2012.
    doi:10.1007/s00020-012-1970-z

    13. De Micheli, E. and G. A. Viano, "Metric and probabilistic information associated with Fredholm integral equations of the first kind," J. Int. Eq. Appl., Vol. 14, 283-310, 2002.
    doi:10.1216/jiea/1181074917

    14. Slepian, D. and H. O. Pollak, "Prolate spheroidal wave function, Fourier analysis and uncertainty I," Bell Syst. Tech. J., Vol. 40, 43-63, 1961.
    doi:10.1002/j.1538-7305.1961.tb03976.x

    15. Hille, E. and J. Tamarkin, "On the characteristic values of linear integral equations," Acta Math., Vol. 57, 1-76, 1931.
    doi:10.1007/BF02403043

    16. Solimene, R., M. A. Maisto, and R. Pierri, "The role of diversity on the singular values of linear scattering operators: The case of strip objects," J. Opt. Soc. A, Vol. 30, 2266-2272, 2013.
    doi:10.1364/JOSAA.30.002266

    17. Landau, H. J., "Sampling, data transmission, and the Nyquist rate," IEEE Proc., Vol. 55, 1701-1706, 1967.
    doi:10.1109/PROC.1967.5962

    18. Beurling, A. and P. Malliavin, "On the closure of characters and the zeros of entire functions," Acta Math., Vol. 118, 79-93, 1967.
    doi:10.1007/BF02392477

    19. Landau, H. J., "Necessary density conditions for sampling and interpolation of certain entire functions," Acta Math., Vol. 117, 35-52, 1967.
    doi:10.1007/BF02395039

    20. Solimene, R. and R. Pierri, "Localization of a planar perfect-electric-conducting interface embedded in a half-space," J. Opt. A: Pure Appl. Opt., Vol. 8, 10-16, 2006.
    doi:10.1088/1464-4258/8/1/002

    21. Solimene, R., M. A. Maisto, and R. Pierri, "Inverse source in the presence of a reflecting plane for the strip case," J. Opt. Soc. Am. A, Vol. 31, 2814-2820, 2014.
    doi:10.1364/JOSAA.31.002814

    22. Solimene, R., M. A. Maisto, and R. Pierri, "Inverse scattering in the presence of a reflecting plane," J. Opt., Vol. 18, 025603, 2015.
    doi:10.1088/2040-8978/18/2/025603

    23. Solimene, R., C. Mola, G. Gennarelli, and F. Soldovieri, "On the singular spectrum of radiation operators in the non-reactive zone: The case of strip sources," J. Opt., Vol. 17, 025605, 2015.
    doi:10.1088/2040-8978/17/2/025605

    24. Riesz, F. and B. S. Nagy, Functional Analysis,, Dover Publications, 1990.