Vol. 79

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-10-17

Optimization of Micromachined Millimeter-Wave Planar Silicon Lens Antennas with Concentric and Shifted Matching Regions

By Henrik Frid, Fritzi Topfer, Shreyasi Bhowmik, Sergey Dudorov, and Joachim Oberhammer
Progress In Electromagnetics Research C, Vol. 79, 17-29, 2017
doi:10.2528/PIERC17082106

Abstract

This paper presents a study of planar silicon lens antennas with up to three steppedimpedance matching regions. The e ective permittivity of the matching regions is tailor-made by etching periodic holes in the silicon substrate. The optimal thickness and permittivity of the matching regions were determined by numerical optimization to obtain the maximum wide-band aperture eciency and smallest side-lobes. We introduce a new geometry for the matching regions, referred to as shifted matching regions. The simulation results indicate that using three shifted matching regions results in twice as large aperture eciency as compared to using three conventional concentric matching regions. By increasing the number of matching regions from one to three, the band-averaged gain is increased by 0.3 dB when using concentric matching regions, and by 3.7 dB when using shifted matching regions, which illustrates the advantage of the proposed shifted matching region design.

Citation


Henrik Frid, Fritzi Topfer, Shreyasi Bhowmik, Sergey Dudorov, and Joachim Oberhammer, "Optimization of Micromachined Millimeter-Wave Planar Silicon Lens Antennas with Concentric and Shifted Matching Regions," Progress In Electromagnetics Research C, Vol. 79, 17-29, 2017.
doi:10.2528/PIERC17082106
http://jpier.org/PIERC/pier.php?paper=17082106

References


    1. George, J., P. F. M. Smulders, and M. H. A. J. Herben, "Application of fan-beam antennas for 60GHz indoor wireless communication," Electronics Letters, Vol. 37, No. 2, 73-74, Jan. 2001.
    doi:10.1049/el:20010059

    2. Xue, L. and V. Fusco, "24 GHz automotive radar planar Luneburg lens," IET Microwaves, Antennas & Propagation, Vol. 1, No. 3, 624-628, 2007.
    doi:10.1049/iet-map:20050203

    3. Tokan, F., N. T. Tokan, A. Neto, and D. Cavallo, "The lateral wave antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 2909-2916, 2014.
    doi:10.1109/TAP.2014.2310465

    4. Xue, L. and V. Fusco, "Polarisation insensitive planar dielectric slab waveguide extended hemielliptical lens," IET Microwaves, Antennas & Propagation, Vol. 2, No. 4, 312-315, 2008.
    doi:10.1049/iet-map:20070194

    5. Rolland, A., R. Sauleau, and L. Le Coq, "Flat-shaped dielectric lens antenna for 60-GHz applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 11, 4041-4048, 2011.
    doi:10.1109/TAP.2011.2164218

    6. Xue, L. and V. Fusco, "Patch fed planar dielectric slab extended hemi-elliptical lens antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 661-666, 2008.
    doi:10.1109/TAP.2008.916974

    7. Sato, K. and H. Ujiie, "A plate luneberg lens with the permittivity distribution controlled by hole density," Electronics and Communications in Japan (Part I: Communications), Vol. 85, No. 9, 1-12, 2002.
    doi:10.1002/ecja.1120

    8. Karttunen, A., J. Saily, A. E. Lamminen, J. Ala-Laurinaho, R. Sauleau, and A. V. Raisanen, "Using optimized eccentricity rexolite lens for electrical beam steering with integrated aperture coupled patch array," Progress In Electromagnetics Research B, Vol. 44, 345-365, 2012.
    doi:10.2528/PIERB12082911

    9. Filipovic, D. F., S. S. Gearhart, and G. M. Rebeiz, "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 10, 1738-1749, 1993.
    doi:10.1109/22.247919

    10. Neto, A., "UWB, non dispersive radiation from the planarly fed leaky lens antenna. Part 1: Theory and design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2238-2247, 2010.
    doi:10.1109/TAP.2010.2048879

    11. Nguyen, N. T., R. Sauleau, and C. J. M. Perez, "Very broadband extended hemispherical lenses: Role of matching layers for bandwidth enlargement," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 1907-1913, 2009.
    doi:10.1109/TAP.2009.2021884

    12. Fernandes, C. A., E. B. Lima, and J. R. Costa, "Broadband integrated lens for illuminating reflector antenna with constant aperture efficiency," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 3805-3813, 2010.
    doi:10.1109/TAP.2010.2078463

    13. Frid, H., "Closed-form relation between the scan angle and feed position for extended hemispherical lenses based on ray tracing," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1963-1966, 2016.
    doi:10.1109/LAWP.2016.2545858

    14. Topfer, F., S. Dudorov, and J. Oberhammer, "Millimeter-wave near-field probe designed for highresolution skin cancer diagnosis," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 6, 2050-2059, 2015.
    doi:10.1109/TMTT.2015.2428243

    15. Sterner, M., N. Somjit, U. Shah, S. Dudorov, D. Chicherin, A. R¨ais¨anen, and J. Oberhammer, "Microwave MEMS devices designed for process robustness and operational reliability," International Journal of Microwave and Wireless Technologies, Vol. 3, No. 5, 547-563, 2011.
    doi:10.1017/S1759078711000845

    16. Dudorov, S., F. Topfer, and J. Oberhammer, "Micromachined-silicon W-band planar-lens antenna with metamaterial free-space matching," 2012 IEEE MTT-S International Microwave Symposium Digest (MTT), 1-3, IEEE, 2012.

    17. Mailloux, R. J., Phased Array Antenna Handbook, Vol. 2, Artech House Boston, 2005.

    18. Goldsmith, P. F., Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications, IEEE Press New York, 1998.

    19. Costa, J. R., C. A. Fernandes, G. Godi, R. Sauleau, L. Le Coq, and H. Legay, "Compact Ka-band lens antennas for leo satellites," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1251-1258, 2008.
    doi:10.1109/TAP.2008.922690

    20. Silveirinha, M. G. and C. A. Fernandes, "Shaped double-shell dielectric lenses for wireless millimeter wave communications," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1674-1677, IEEE, 2000.

    21. Fitzek, F. and R. H. Rasshofer, "Automotive radome design-reflection reduction of stratified media," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1076-1079, 2009.
    doi:10.1109/LAWP.2009.2032571

    22. Ward, H., W. Puro, and D. Bowie, "Artificial dielectrics utilizing cylindrical and spherical voids," Proceedings of the IRE, Vol. 44, No. 2, 171-174, 1956.
    doi:10.1109/JRPROC.1956.274901

    23. Somjit, N., G. Stemme, and J. Oberhammer, "Binary-coded 4.25-bit w-band monocrystalline — Silicon mems multistage dielectric-block phase shifters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 11, 2834-2840, 2009.
    doi:10.1109/TMTT.2009.2032350

    24., , CST Microwave Studio, 2016, www.cst.com.

    25. Liu, L., S. Matitsine, Y. Gan, and K. Rozanov, "Effective permittivity of planar composites with randomly or periodically distributed conducting fibers," Journal of Applied Physics, Vol. 98, No. 6, 063512, 2005.
    doi:10.1063/1.2035895

    26. Collin, R. E., Foundations for Microwave Engineering, John Wiley & Sons, 2007.

    27. Holter, H., "Dual-polarized broadband array antenna with BOR-elements, mechanical design and measurements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 2, 305-312, 2007.
    doi:10.1109/TAP.2006.886557

    28. Ludwig, A., "The definition of cross polarization," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 1, 116-119, 1973.
    doi:10.1109/TAP.1973.1140406

    29. Silver, S., Microwave Antenna Theory and Design, No. 19, IET, 1949.

    30. Jain, S., M. Abdel-Mageed, and R. Mittra, "Flat-lens design using field transformation and its comparison with those based on transformation optics and ray optics," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 777-780, 2013.
    doi:10.1109/LAWP.2013.2270946

    31. Quevedo-Teruel, O., W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, "Transformation optics for antennas: Why limit the bandwidth with metamaterials?," Scientific Reports, Vol. 3, 2013.

    32. Mei, Z. L., J. Bai, and T. J. Cui, "Gradient index metamaterials realized by drilling hole arrays," Journal of Physics D: Applied Physics, Vol. 43, No. 5, 055404, 2010.
    doi:10.1088/0022-3727/43/5/055404