Vol. 78

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-10-14

A New Method of Stomach Tumor Recognition Based on Ultra Wideband Capsule Endoscopy

By Gong Chen, Ye-Rong Zhang, and Bi-Yun Chen
Progress In Electromagnetics Research C, Vol. 78, 193-208, 2017
doi:10.2528/PIERC17080503

Abstract

In this paper, a new kind of capsule endoscopy with through-body radar is utilized for the first time. Finite difference time domain (FDTD) method is used to establish an electromagnetic simulation model of stomach. A technique based on the combination of improved back-projection (BP) algorithm and support vector machine (SVM) is proposed to solve the problems of rapidly recognizing tumor shapes in the stomach. In this technique, imaging data can be obtained using the improved BP algorithm and are classified by the SVM. The algorithm must consider the influence of various tissues in the human body: the attenuation of the signal strength of electromagnetic waves, the decrease in speed and the refraction due to the different permittivity between the different organs of the body. These factors will eventually lead to image offset, and even generate a virtual image. It is effective to refrain the displacement of image with modifying the time element of the imaging algorithm by iteration. Simulation results based on data from the model verify its feasibility and validity. Results further demonstrate that the resolution is extremely high. Tumor shapes, which have different sizes, positions, and quantities, can be reconstructed using this approach. When the data are contaminated by noises, the tumor shape in the stomach can still be suitably predicted, which demonstrates the robustness of the method. Finally, classification accuracy analysis for different sampling distances and sampling intervals shows that the effects of changing the distance and intervals on shape recognition are limited. The classification accuracy can also be improved by decreasing the sampling intervals or increasing the sampling distance.

Citation


Gong Chen, Ye-Rong Zhang, and Bi-Yun Chen, "A New Method of Stomach Tumor Recognition Based on Ultra Wideband Capsule Endoscopy," Progress In Electromagnetics Research C, Vol. 78, 193-208, 2017.
doi:10.2528/PIERC17080503
http://jpier.org/PIERC/pier.php?paper=17080503

References


    1. Bolomey, J. C., "Recent european developments in active microwave imaging for industrial, scientific, and medical applications," IEEE T. Microw. Theory, Vol. 37, 2109-2117, Dec. 1989.
    doi:10.1109/22.44129

    2. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
    doi:10.1163/156939304774113089

    3. Craddock, J., M. Donelli, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2012.

    4. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of nonmeasurable equivalent currents for the imaging of dielectric objects," Inverse Problems, Vol. 25, No. 5, 2009.
    doi:10.1088/0266-5611/25/5/055004

    5. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscalling approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 12, 3527-3539, Dec. 2006.
    doi:10.1109/TGRS.2006.881753

    6., , National Breast Cancer Coalition (NBCC), URL: http://www.stopbreast- cancer.org, 2014.

    7. Yujiri, L., "Passive millimeter wave imaging," IEEE MTT-S International Microwave symposium, Vol. 4, 98-101, Jun. 2006.

    8. Hu, C., L. Liu, and B. Sun, "Compact representation and panoramic representation for capsule endoscope images," Int. J. Inf. Acquisit., Vol. 6, 257-268, 2009.
    doi:10.1142/S0219878909001989

    9. Hwang, S. and M. Emre Celebi, "Polyp detection in wireless capsule endoscopy videos based on image segmentation and geometric feature," Proc. 2010 IEEE Int. Conf. Acoust. Speech Signal Process., 678-681, Mar. 2010.
    doi:10.1109/ICASSP.2010.5495103

    10. Gono, K., "Multifunctional endoscopic imaging system for support of early cancer diagnosis," IEEE J. Sel. Topics Quant. Electron, Vol. 14, No. 1, 62-69, Jan. 2008.
    doi:10.1109/JSTQE.2007.913966

    11. Gono, K., T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, "Appearance of endhanced tissue features in narrow band endoscopic imaging," J. Biomed. Opt., Vol. 9, 568-577, May 2004.
    doi:10.1117/1.1695563

    12. Gono, K., K. Yamazaki, N. Doguchi, T. Nonami, T. Obi, M. Yamagichi, N. Ohyama, H. Machida, Y. Saono, S. Yoshida, Y. Hamamoto, and T. Endo, "Endoscopic observation of tissue by narrow band illumination," Opt. Rev., Vol. 10, 211-215, 2003.
    doi:10.1007/s10043-003-0211-8

    13. Atasoy, S., B. Glocker, S. Giannarou, D. Mateus, A.Meining, G. Yang, and N. Navab, "Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy," Proc. MICCAI, 499-506, 2009.

    14. Li, B. and M. Q.-H. Meng, "Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection," IEEE Trans. on Information Technology in Biomedicine, Vol. 16, No. 3, 323-329, May 2012.
    doi:10.1109/TITB.2012.2185807

    15. Li, B. and M. Q.-H. Meng, "Computer aided detection of bleeding regions in capsule endoscopy images," IEEE Trans. Biomed. Eng., Vol. 56, No. 4, 1032-1039, Apr. 2009.
    doi:10.1109/TBME.2008.2010526

    16. Li, B. and M. Q.-H. Meng, "Texture analysis for ulcer detection in capsule endoscopy images," Image Vis. Comput., Vol. 27, No. 9, 1336-1342, Aug. 2009.
    doi:10.1016/j.imavis.2008.12.003

    17. Li, B. and M. Q.-H. Meng, "Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments," Comput. Bilo. Med., Vol. 39, No. 2, 141-147, Feb. 2009.
    doi:10.1016/j.compbiomed.2008.11.007

    18. Wang, L., Support Vector Machines: Theory and Applications, Springer-Verlag, New York, 2005.
    doi:10.1007/b95439

    19. Jain, A. K. and D. Zongker, "Feature selection, evaluation, application, and small sample performance," IEEE Trans. PAMI, Vol. 19, No. 2, 153-158, Feb. 1997.
    doi:10.1109/34.574797

    20. Dash, M. and H. Liu, "Feature selection for classification," Intell. Data Anal., Vol. 1, 131-156, 1997.
    doi:10.1016/S1088-467X(97)00008-5

    21. Guyon, I., J. Westion, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., Vol. 46, 389-422, 2002.
    doi:10.1023/A:1012487302797

    22. Wang, F. and Y. Zhang, "A real-time through-wall detection based on support vector machine," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 75-84, 2011.
    doi:10.1163/156939311793898396

    23. Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
    doi:10.1007/978-1-4757-2440-0

    24. Miteran, J., S. Bouillant, and E. Bourennane, "SVM approximation for real-time image segmentation by using an improved hyperrectangles-based method," Real-Time Imaging, Vol. 9, 179-188, 2003.
    doi:10.1016/S1077-2014(03)00035-4

    25. Vapnik, V., Statistical Learning Theory, J. Wiley, New York, 1998.

    26. Steinwart, I., "On the optimal parameter choice for v-support vector machines," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 25, No. 10, 1274-1284, 2003.
    doi:10.1109/TPAMI.2003.1233901

    27. Mangasarian, O. and D. Musicant, "Lagrangian support vector machines," Journal of Machine Learning Research, Vol. 1, 161-177, 2001.

    28. Salmon, N. A., "Polarimetric scene simulation in millimeter-wave radiometric imaging," Proc. SPIE, 260-269, Feb. 2004.
    doi:10.1117/12.562206

    29. Chapelle, O., P. Haffner, and V. N. Vapnik, "Support vector machines for histogram-based image classification," IEEE Transactions on Neural Networks, Vol. 10, No. 5, 1055-1064, May 1999.
    doi:10.1109/72.788646

    30. Fetterman, M. R., J. Dougherty, W. L. Kiser, and Jr., "Scene simulation of mm-wave images," IEEE 2007 AP-S Int. Symposium, 1493-1496, Dec. 2007.

    31. Gurel, L. and U. Oguz, "Three-dimensional FDTD modeling of a ground-penetrating radar," IEEE Trans. Geosci. Remote Sens., Vol. 38, 1513-1520, Apr. 2008.

    32. Wu, S. Y., Y. Y. Xu, and J. Chen, "Through-wall shape estimation based on UWB-SP radar," IEEE Geosci. Remote Sens. Letters, Vol. 10, 1234-1238, May 2013.
    doi:10.1109/LGRS.2012.2237012

    33. Dehmollaian, M., "Through-wall shape reconstruction and wall parameters estimation using differential evolution," IEEE Geosci. Remote Sens. Letters, Vol. 8, 201-205, Feb. 2011.
    doi:10.1109/LGRS.2010.2056912

    34. Cheng, Z., W. Ji, and L. Hao, "Imaging algorithm for synthetic aperture interferometric radiometer in near field," Science China Technological Sciences, Vol. 54, 2224-2231, Aug. 2011.
    doi:10.1007/s11431-011-4323-2

    35. Lei, W., C. Huang, and Y. Su, "A real-time BP imaging algorithm in SPR application," IEEE International Geoscience and Remote Sensing Symposium, 1734-1737, 2005.

    36. Ahmad, F., M. Amin, and S. Kassam, "A beamforming approach to stepped-frequency synthetic aperture through-the-wall radar imaging," IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 24-27, 2005.
    doi:10.1109/CAMAP.2005.1574174