Vol. 79
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-10-17
Simulation Design and Testing of a Dielectric Embedded Tapered Slot UWB Antenna for Breast Cancer Detection
By
Progress In Electromagnetics Research C, Vol. 79, 1-15, 2017
Abstract
A distortion-less ultra-wideband tapered slot antenna is designed to achieve wide band impedance matching and high gain without requiring coupling liquids. The antenna is embedded in a suitable dielectric material for compact size and performance improvement. The near-field test is simulated by placing several field probes near the antenna to plot the radiation pattern and polarization isolation. The antenna exhibits a highly directive pattern and polarization isolation in near field. The time domain antenna distortion is tested by calculating the fidelity and group delay. The results show low distortion and also show the importance of covering the antenna by dielectric layers for bandwidth increment and distortion reduction. To evaluate the antenna performance in breast cancer detection, three breast phantoms are imaged by using the raster scan imaging method. Two approaches are proposed to detect tumors without the need of breast background data. The approaches based on the effect of the tumor on transmission and reflection parameters on the frequency band allowed for medical applications. The obtained images show the antenna to be a strong candidate for breast imaging as well as in tumor detection for different scenarios that include complex multi-layer phantom and small tumor.
Citation
Dheyaa T. Al-Zuhairi, John M. Gahl, Adil Al-Azzawi, and Naz E. Islam, "Simulation Design and Testing of a Dielectric Embedded Tapered Slot UWB Antenna for Breast Cancer Detection," Progress In Electromagnetics Research C, Vol. 79, 1-15, 2017.
doi:10.2528/PIERC17080103
References

1. Allen, B., M. Dohler, E. E. Okon, W. Q. Malik, A. K. Brown, and D. J. Edwards, Ultra Wideband Antennas and Propagation for Communications, Radar and Imaging, John Wiley & Sons Ltd, Chichester, England, 2007.

2. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near-field imaging," IEEE Microwave Magazine, Vol. 3, No. 1, 48-56, March 2002.
doi:10.1109/6668.990683

3. Sarafianou, M., I. J. Craddock, and T. Henriksson, "Towards enhancing skin reflection removal and image focusing using a 3-D breast surface reconstruction algorithm," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 10, 5343-5346, June 2013.
doi:10.1109/TAP.2013.2271494

4. Li, X., S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. D. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1856-1865, August 2004.
doi:10.1109/TMTT.2004.832686

5. Abbosh, A. M., "Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 690-692, June 2009.
doi:10.1109/LAWP.2009.2025613

6. Waterhouse, R., Printed Antennas for Wireless Communications, Chapter 6: Printed Tapered Slot Antennas, John Wiley & Sons, Chichester, England, 2007.
doi:10.1002/9780470512241

7. Xu, H.-Y., H. Zhang, J. Wang, and L.-X. Ma, "A new tapered slot antenna with symmetrical and stable radiation pattern," Progress In Electromagnetics Research Letters, Vol. 5, 35-43, 2008.
doi:10.2528/PIERL08103003

8. Adamiuk, G., T. Zwick, and W. Wiesbeck, "Compact, Dual-polarized UWB-antenna, embedded in a dielectric," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 279-286, February 2010.
doi:10.1109/TAP.2009.2037712

9. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2318-2326, July 2010.
doi:10.1109/TAP.2010.2048844

10. Mohammed, B. J., A. M. Abbosh, D. Ireland, and M. E. Bialkowski, "Compact wideband antenna for microwave imaging of brain," Progress In Electromagnetics Research C, Vol. 27, 27-39, 2012.
doi:10.2528/PIERC11102708

11. Teni, G., N. Zhang, J. Qiu, and P. Zhang, "Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 417-420, March 2013.
doi:10.1109/LAWP.2013.2253592

12. Chen, L., Z. Lei, R. Yang, J. Fan, and X. Shi, "A broadband artificial material for gain enhancement of antipodal tapered slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 395-400, October 2014.
doi:10.1109/TAP.2014.2365044

13. Pandey, G. K., H. S. Singh, P. K. Bharti, A. Pandey, and M. K. Meshram, "High gain Vivaldi antenna for radar and microwave imaging applications," Transactions on International Journal of Signal Processing Systems, Vol. 3, No. 1, 35-39, June 2015.

14. Larsen, L. E. and J. H. Jacobi, Medical Applications of Microwave Imaging, IEEE Press, New York, 1985.

15. Amineh, R. K., M. Ravan, A. Trehan, and N. K. Nikolova, "Near-field microwave imaging based on aperture raster scanning With TEM horn antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 928-940, March 2011.
doi:10.1109/TAP.2010.2103009

16. Khalatpour, A., R. K. Amineh, H. Xu, Y. Baskharoun, and N. K. Nikolova, "Image quality enhancement in the microwave raster scanning method," 2011 IEEE MTT-S International Microwave Symposium, 1-4, Baltimore, MD, 2011.

17. Fei, P., Y.-C. Jiao, Y. Ding, and F.-S. Zhang, "A compact coplanar waveguide fed wide tapered slot ultra-wideband antenna," Progress In Electromagnetics Research Letters, Vol. 25, 77-85, 2011.
doi:10.2528/PIERL11060208

18. Zhu, F., S. Gao, A. TS Ho, and T. Brown, "Compact size asymmetric linearly tapered slot antenna for portable ultra-wideband imaging radar system," Radar Systems IET International Conference, 1-4, Glasgow, UK, 2012.

19. Li, X., S. C. Hagness, M. K. Choi, and D. W. van der Weide, "Numerical and experimental investigation of an ultrawideband ridged pyramidal horn antenna with curved launching plane for pulse radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 259-262, 2003.

20. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

21. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. V. Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, December 2008.
doi:10.1109/TBME.2008.2002130

22. Maher, A. and K. M. Quboa, "Development of accurate UWB dielectric properties dispersion at CST simulation tool for modeling microwave interactions with numerical breast phantoms," Eighth International Multi-Conference on Systems, Signals & Devices (SSD 11), Sousse, Tunisia, 2011.