Vol. 79

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-10-17

Simulation Design and Testing of a Dielectric Embedded Tapered Slot UWB Antenna for Breast Cancer Detection

By Dheyaa T. Al-Zuhairi, John M. Gahl, Adil Al-Azzawi, and Naz E. Islam
Progress In Electromagnetics Research C, Vol. 79, 1-15, 2017
doi:10.2528/PIERC17080103

Abstract

A distortion-less ultra-wideband tapered slot antenna is designed to achieve wide band impedance matching and high gain without requiring coupling liquids. The antenna is embedded in a suitable dielectric material for compact size and performance improvement. The near-field test is simulated by placing several field probes near the antenna to plot the radiation pattern and polarization isolation. The antenna exhibits a highly directive pattern and polarization isolation in near field. The time domain antenna distortion is tested by calculating the fidelity and group delay. The results show low distortion and also show the importance of covering the antenna by dielectric layers for bandwidth increment and distortion reduction. To evaluate the antenna performance in breast cancer detection, three breast phantoms are imaged by using the raster scan imaging method. Two approaches are proposed to detect tumors without the need of breast background data. The approaches based on the effect of the tumor on transmission and reflection parameters on the frequency band allowed for medical applications. The obtained images show the antenna to be a strong candidate for breast imaging as well as in tumor detection for different scenarios that include complex multi-layer phantom and small tumor.

Citation


Dheyaa T. Al-Zuhairi, John M. Gahl, Adil Al-Azzawi, and Naz E. Islam, "Simulation Design and Testing of a Dielectric Embedded Tapered Slot UWB Antenna for Breast Cancer Detection," Progress In Electromagnetics Research C, Vol. 79, 1-15, 2017.
doi:10.2528/PIERC17080103
http://jpier.org/PIERC/pier.php?paper=17080103

References


    1. Allen, B., M. Dohler, E. E. Okon, W. Q. Malik, A. K. Brown, and D. J. Edwards, Ultra Wideband Antennas and Propagation for Communications, Radar and Imaging, John Wiley & Sons Ltd, Chichester, England, 2007.

    2. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near-field imaging," IEEE Microwave Magazine, Vol. 3, No. 1, 48-56, March 2002.
    doi:10.1109/6668.990683

    3. Sarafianou, M., I. J. Craddock, and T. Henriksson, "Towards enhancing skin reflection removal and image focusing using a 3-D breast surface reconstruction algorithm," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 10, 5343-5346, June 2013.
    doi:10.1109/TAP.2013.2271494

    4. Li, X., S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. D. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1856-1865, August 2004.
    doi:10.1109/TMTT.2004.832686

    5. Abbosh, A. M., "Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 690-692, June 2009.
    doi:10.1109/LAWP.2009.2025613

    6. Waterhouse, R., Printed Antennas for Wireless Communications, Chapter 6: Printed Tapered Slot Antennas, John Wiley & Sons, Chichester, England, 2007.
    doi:10.1002/9780470512241

    7. Xu, H.-Y., H. Zhang, J. Wang, and L.-X. Ma, "A new tapered slot antenna with symmetrical and stable radiation pattern," Progress In Electromagnetics Research Letters, Vol. 5, 35-43, 2008.
    doi:10.2528/PIERL08103003

    8. Adamiuk, G., T. Zwick, and W. Wiesbeck, "Compact, Dual-polarized UWB-antenna, embedded in a dielectric," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 279-286, February 2010.
    doi:10.1109/TAP.2009.2037712

    9. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2318-2326, July 2010.
    doi:10.1109/TAP.2010.2048844

    10. Mohammed, B. J., A. M. Abbosh, D. Ireland, and M. E. Bialkowski, "Compact wideband antenna for microwave imaging of brain," Progress In Electromagnetics Research C, Vol. 27, 27-39, 2012.
    doi:10.2528/PIERC11102708

    11. Teni, G., N. Zhang, J. Qiu, and P. Zhang, "Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 417-420, March 2013.
    doi:10.1109/LAWP.2013.2253592

    12. Chen, L., Z. Lei, R. Yang, J. Fan, and X. Shi, "A broadband artificial material for gain enhancement of antipodal tapered slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 395-400, October 2014.
    doi:10.1109/TAP.2014.2365044

    13. Pandey, G. K., H. S. Singh, P. K. Bharti, A. Pandey, and M. K. Meshram, "High gain Vivaldi antenna for radar and microwave imaging applications," Transactions on International Journal of Signal Processing Systems, Vol. 3, No. 1, 35-39, June 2015.

    14. Larsen, L. E. and J. H. Jacobi, Medical Applications of Microwave Imaging, IEEE Press, New York, 1985.

    15. Amineh, R. K., M. Ravan, A. Trehan, and N. K. Nikolova, "Near-field microwave imaging based on aperture raster scanning With TEM horn antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 928-940, March 2011.
    doi:10.1109/TAP.2010.2103009

    16. Khalatpour, A., R. K. Amineh, H. Xu, Y. Baskharoun, and N. K. Nikolova, "Image quality enhancement in the microwave raster scanning method," 2011 IEEE MTT-S International Microwave Symposium, 1-4, Baltimore, MD, 2011.

    17. Fei, P., Y.-C. Jiao, Y. Ding, and F.-S. Zhang, "A compact coplanar waveguide fed wide tapered slot ultra-wideband antenna," Progress In Electromagnetics Research Letters, Vol. 25, 77-85, 2011.
    doi:10.2528/PIERL11060208

    18. Zhu, F., S. Gao, A. TS Ho, and T. Brown, "Compact size asymmetric linearly tapered slot antenna for portable ultra-wideband imaging radar system," Radar Systems IET International Conference, 1-4, Glasgow, UK, 2012.

    19. Li, X., S. C. Hagness, M. K. Choi, and D. W. van der Weide, "Numerical and experimental investigation of an ultrawideband ridged pyramidal horn antenna with curved launching plane for pulse radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 259-262, 2003.

    20. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
    doi:10.1088/0031-9155/41/11/003

    21. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. V. Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, December 2008.
    doi:10.1109/TBME.2008.2002130

    22. Maher, A. and K. M. Quboa, "Development of accurate UWB dielectric properties dispersion at CST simulation tool for modeling microwave interactions with numerical breast phantoms," Eighth International Multi-Conference on Systems, Signals & Devices (SSD 11), Sousse, Tunisia, 2011.