Vol. 76

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-08-04

Further Wideband RCS Reduction on Metasurface by Introducing a Phasor Interference Element

By Tong Han, Xiang-Yu Cao, and Jun Gao
Progress In Electromagnetics Research C, Vol. 76, 139-147, 2017
doi:10.2528/PIERC17061305

Abstract

A novel method for further wideband RCS reduction on metasurface (MS) is proposed in this paper. By introducing a phasor interference element to the original MS composed of two elements, RCS of the proposed MS constructed by three elements can be further remarkably decreased in broadband. The measurement procedure on scattering performances of samples is conducted in an anechoic chamber, in which the experimental results indicate that the proposed MS can achieve further 3-dB RCS reduction from 6.94GHz to 15.35GHz compared to the original MS, and the maximum further reduction reaches 24.9dB. As a result, compared with a same-size metallic plate illuminated by a normal plane wave, RCS of the proposed MS can be reduced by more than 8.5-dB from 6.68GHz to 15.38GHz with the relative bandwidth of 78.9%.

Citation


Tong Han, Xiang-Yu Cao, and Jun Gao, "Further Wideband RCS Reduction on Metasurface by Introducing a Phasor Interference Element," Progress In Electromagnetics Research C, Vol. 76, 139-147, 2017.
doi:10.2528/PIERC17061305
http://jpier.org/PIERC/pier.php?paper=17061305

References


    1. Chu, C. H., M. L. Tseng, J.Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, "Active dielectric metasurface based on phase-change medium," Laser Photonics Rev., Vol. 10, No. 6, 986-994, 2016.
    doi:10.1002/lpor.201600106

    2. Zhang, H. F., M. Kang, X. Q. Zhang, W. G. Guo, C.G. Lv, Y. F. Li, W. L. Zhang, and J. G. Han, "Coherent control of optical spin-to-orbital angular momentum conversion in metasurface," Adv. Mater., Vol. 29, 1604252, 2017.
    doi:10.1002/adma.201604252

    3. Xie, B. Y., K. Tang, H. Cheng, Z. Y. Liu, S. Q. Chen, and J. G. Tian, "Coding acoustic metasurfaces," Adv. Mater., Vol. 29, 1603507, 2017.
    doi:10.1002/adma.201603507

    4. Li, H. P., G. M. Wang, J. G. Liang, X. J. Gao, H. S. Hou, and X. Y. Jia, "Single-layer focusing gradient metasurface for ultrathin planar lens antenna application," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1452-1457, 2017.
    doi:10.1109/TAP.2016.2642832

    5. Gonzalez-Ovejero, D., G. Minatti, G. Chattopadhyay, and S. Maci, "Multibeam by metasurface antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 2923-2930, 2017.
    doi:10.1109/TAP.2017.2670622

    6. Sievenpiper, D., L. J. Zhang, R. F. J. Broas, N. G. Alex’opolous, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    7. Paquay, M., J. C. Iriarte, and Ederra, "Thin AMC structure for radar cross-section reduction," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3630-3638, 2007.
    doi:10.1109/TAP.2007.910306

    8. Gao, L. H., N. Xiang, J. Zhao, D. S. Dong, K. Wang, and Q. Cheng, "A low RCS metasurface for THz applications," IEEE 3rd Asia-Pacific Conference on Antennas and Propagation(APCAP), 1279-1281, Harbin, China, 2014.

    9. Yang, Y. H., L. Q. Jing, B. Zheng, R. Hao, W. Y. Yin, E. P. Li, C. M. Soukoulis, and H. S. Chen, "Full-polarization 3D metasurface cloak with preserved amplitude and phase," Adv. Mater., Vol. 28, 6866-6871, 2016.
    doi:10.1002/adma.201600625

    10. Yang, Y. H., H. P. Wang, F. X. Yu, Z. W. Xu, and H. S. Chen, "A metasurface carpet cloak for electromagnetic, acoustic and water waves," Scientific Reports, Vol. 6, 20219, 2016.
    doi:10.1038/srep20219

    11. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    12. Yahiaoui, R., J. P. Guillet, F. de Miollis, and P. Mounaix, "Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications," Optics Letters, Vol. 38, No. 23, 4988-4990, 2013.
    doi:10.1364/OL.38.004988

    13. Yahiaoui, R., K. Hanai, K., Taakano, T., Nishida, F. Miyamaru, M. Nakajima, and M. Hangyo, "Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators," Optics Letters, Vol. 40, No. 13, 3197-3200, 2015.
    doi:10.1364/OL.40.003197

    14. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber," Journal of Applied Physics, Vol. 118, No. 8, 083103, 2015.
    doi:10.1063/1.4929449

    15. Pan, W., X. Yu, J. Zhang, and W. Zeng, "A broadband terahertz metamaterial absorber based on two circular split rings," IEEE Journal of Quantum Electronics, Vol. 53, No. 2, 8500206, 2017.

    16. Nouman, M. T., J. H. Hwang, and J. H. Jang, "Ultrathin terahertz quarter-wave plate based on split ring resonator and wire grating hybrid metasurface," Scientific Reports, Vol. 6, 39062, 2016.
    doi:10.1038/srep39062

    17. Liang, L. J., M. G. Wei, X. Yan, D. Q. Wei, D. C. Liang, J. G. Han, X. Ding, G. Y. Zhang, and J. Q. Yao, "Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies," Scientific Reports, Vol. 6, 39252, 2016.
    doi:10.1038/srep39252

    18. Yang, H. H., X. Y. Cao, F. Yang, J. Gao, S. H. Xu, M. K. Li, X. B. Chen, Yi Zhao, Y. J. Zheng, and S. J. Li, "A programmable metasurface with dynamic polarization, scattering and focusing control," Scientific Reports, Vol. 6, 35692, 2016.
    doi:10.1038/srep35692

    19. Huang, C., B. Sun, W. B. Pan, J. H. Cui, X. Y.Wu, and X. G. Luo, "Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface," Scientific Reports, Vol. 7, 42302, 2017.
    doi:10.1038/srep42302

    20. Wan, X., M. Q. Qi, T. Y. Chen, and T. J. Cui, "Field-programmable beam reconfiguring based on digitally controlled coding metasurface," Scientific Reports, Vol. 6, 20663, 2016.
    doi:10.1038/srep20663

    21. Song, Y. C., J. Ding, C. J. Guo, Y. H. Ren, and J. K. Zhang, "Ultra-broadband backscatter radar cross section reduction based on polarization-insensitive metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 329-331, 2016.
    doi:10.1109/LAWP.2015.2443853

    22. Mighani, M. and G. Dadashzadeh, "Broadband RCS reduction using a novel double layer chessboard AMC surface," Electronics Letters, Vol. 52, No. 14, 1253-1255, 2016.
    doi:10.1049/el.2016.1214

    23. Li, Y. F., J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, "Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces," Appl. Phys. Lett., Vol. 104, 221110, 2014.
    doi:10.1063/1.4881935

    24. Yan, X., L. j. Liang, J. Yang, W. W. Liu, X. Ding, D. G. Xu, Y. T. Zhang, T. J. Cui, and J. Q. Yao, "Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface," Optics Express, Vol. 23, No. 22, 29128-29137, 2015.
    doi:10.1364/OE.23.029128

    25. Wang, K., J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, "Broadband and broad-angle lowscattering metasurface based on hybrid optimization algorithm," Scientific Reports, Vol. 4, 5935, 2014.

    26. Zhao, Y., X.Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, "Broadband low-RCS metasurface and its application on antenna," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 2954-2962, 2016.
    doi:10.1109/TAP.2016.2562665

    27. Hao, Y. W., Y. Liu, K. Li, and S. X. Gong, "Wideband radar cross-section reduction of microstrip patch antenna with split-ring resonators," Electronics Letters, Vol. 51, No. 20, 2015.
    doi:10.1049/el.2015.1725