Vol. 77

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-08-26

Dual-Band Polarization-Insensitive Metamaterial Inspired Microwave Absorber for LTE-Band Applications

By Kanwar Preet Kaur, Trushit K. Upadhyaya, and Merih Palandoken
Progress In Electromagnetics Research C, Vol. 77, 91-100, 2017
doi:10.2528/PIERC17060502

Abstract

In this paper, the design, simulation andmeasurementof a dual-band polarizationinsensitive metamaterial inspired microwave absorber are presented.The unit cell is composed of two concentric closed ring resonator(CRR) structures forming octagonal rings which arecarved on an FR-4 dielectric substrate to give maximum absorption at dual frequencies of 2.09 GHz and 2.54 GHz. At these frequencies, the minimum reflection coefficients of -29.15 dB and -18.76 dB are achieved with absorption rates of 99.88% and 98.67% andnarrow 10 dB bandwidths of 2.62% and 2.76%, respectively. Microwave absorption property of the proposed absorber structure is simulated by setting the perfect electric boundary conditions in four planes whose surface normal vectors are directed perpendicular to the wave propagation direction. These numerical computation settings replicate the rectangular waveguideto be used in the experimental measurements for the comparison between the simulated and experimental results. It is experimentally verifiedby the waveguide measurement method that the absorption rates about 99% are achieved for dual bands with polarization insensitivity, thereby meeting the absorption requirements of LTE-band frequenciesfor a real time microwave absorber based energy harvesting systems.

Citation


Kanwar Preet Kaur, Trushit K. Upadhyaya, and Merih Palandoken, "Dual-Band Polarization-Insensitive Metamaterial Inspired Microwave Absorber for LTE-Band Applications," Progress In Electromagnetics Research C, Vol. 77, 91-100, 2017.
doi:10.2528/PIERC17060502
http://jpier.org/PIERC/pier.php?paper=17060502

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Smith, D. R., J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, Aug. 6, 2004.
    doi:10.1126/science.1096796

    3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184, May 1, 2000.
    doi:10.1103/PhysRevLett.84.4184

    4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Nov. 22, 2005.

    5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, Nov. 10, 2006.
    doi:10.1126/science.1133628

    6. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, No. 4, 224-227, Apr. 1, 2007.
    doi:10.1038/nphoton.2007.28

    7. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966, Oct. 30, 2000.
    doi:10.1103/PhysRevLett.85.3966

    8. Fang, N. and X. Zhang, "Imaging properties of a metamaterial superlens," Applied Physics Letters, Vol. 82, No. 2, 161-163, Jan. 13, 2003.
    doi:10.1063/1.1536712

    9. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Novel stacked μ-negative materialloaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 02, 229-235, Mar. 1, 2016.
    doi:10.1017/S175907871400138X

    10. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index materialinspired 90-deg electrically tilted ultra-wideband resonator," Optical Engineering, Vol. 53, No. 10, 107104, Oct. 1, 2014.
    doi:10.1117/1.OE.53.10.107104

    11. Palandoken, M., Artificial Materials Based Microstrip Antenna Design, INTECH Open Access Publisher, 2011.

    12. Niesler, F. B., J. K. Gansel, S. Fischbach, and M. Wegener, "Metamaterial metal-based bolometers," Applied Physics Letters, Vol. 100, No. 20, 203508, May 14, 2012.
    doi:10.1063/1.4714741

    13. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, May 21, 2008.
    doi:10.1103/PhysRevLett.100.207402

    14. Zhu, B., Z.Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
    doi:10.2528/PIER10011110

    15. Cheng, Y. and H. Yang, "Design, simulation, and measurement of metamaterial absorber," Journal of Applied Physics, Vol. 108, No. 3, 034906, Aug. 1, 2010.
    doi:10.1063/1.3311964

    16. Dincer, F., M. Karaaslan, E. Unal, K. Delihacioglu, and C. Sabah, "Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators," Progress In Electromagnetics Research, Vol. 144, 123-132, 2014.
    doi:10.2528/PIER13111403

    17. Ramya, S. and I. Srinivasa Rao, "Design of polarization-insensitive dual band metamaterial absorber," Progress In Electromagnetics Research M, Vol. 50, 23-31, 2016.
    doi:10.2528/PIERM16070501

    18. He, X. J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.
    doi:10.2528/PIER11022307

    19. Shen, X., Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, "Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation," Applied Physics Letters, Vol. 101, No. 15, 154102, Oct. 8, 2012.
    doi:10.1063/1.4757879

    20. Wang, G. D., J. F. Chen, X. Hu, Z. Q. Chen, and M. Liu, "Polarization-insensitive triple-band microwave metamaterial absorber based on rotated square rings," Progress In Electromagnetics Research, Vol. 145, 175-183, 2014.
    doi:10.2528/PIER14010401

    21. Sood, D., "A triple band ultra-thin metamaterial absorber with wide incident angle stability," Indian Journal of Radio & Space Physics (IJRSP), Vol. 45, No. 2, 57-66, Dec. 29, 2016.

    22. Yahiaoui, R., J. P. Guillet, F. de Miollis, and P. Mounaix, "Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications," Optics Letters, Vol. 38, No. 23, 4988-4990, 2013.
    doi:10.1364/OL.38.004988

    23. Agarwal, M., A. K. Behera, and M. K. Meshram, "Wide-angle quad-band polarization-insensitive metamaterial absorber," Electronics Letters, Vol. 52, No. 5, 340-342, Jan. 22, 2016.
    doi:10.1049/el.2015.4134

    24. Wang, N., J. Tong, W. Zhou, W. Jiang, J. Li, X. Dong, and S. Hu, "Novel quadruple-band microwave metamaterial absorber," IEEE Photonics Journal, Vol. 7, No. 1, 1-6, Feb. 2015.

    25. Park, J. W., P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, "Multi-band metamaterial absorber based on the arrangement of donut-type resonators," Optics Express, Vol. 21, No. 8, 9691-9702, Apr. 22, 2013.
    doi:10.1364/OE.21.009691

    26. Chaurasiya, D., S. Ghosh, S. Bhattacharyya, A. Bhattacharya, and K. V. Srivastava, "Compact multi-band polarization-insensitive metamaterial absorber," IET Microwaves, Antennas & Propagation, Vol. 10, No. 1, 94-101, Jan. 9, 2016.
    doi:10.1049/iet-map.2015.0220

    27. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber," Journal of Applied Physics, Vol. 118, No. 8, 083103, 2015.
    doi:10.1063/1.4929449

    28. Huang, Y. J., G. J. Wen, J. Li, W. R. Zhu, P. Wang, and Y. H. Sun, "Wide-angle and polarization-independent metamaterial absorber based on snowflake-shaped configuration," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 5, 552-559, Mar. 1, 2013.
    doi:10.1080/09205071.2013.756383

    29. Ramya, S. and I. Srinivasa Rao, "Dual band microwave metamaterial absorber using loop resonator for electromagnetic interference suppression," Int. J. Appl. Eng. Res., Vol. 10, No. 30, 22712-22715, 2015.

    30. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters, Vol. 100, No. 10, 103506, Mar. 5, 2012.
    doi:10.1063/1.3692178

    31. Liu, Y., S. Gu, C. Luo, and X. Zhao, "Ultra-thin broadband metamaterial absorber," Applied Physics A, Vol. 108, No. 1, 19-24, Jul. 1, 2012.
    doi:10.1007/s00339-012-6936-0

    32. Yahiaoui, R., K. Hanai, K. Takano, T. Nishida, F. Miyamaru, M. Nakajima, and M. Hangyo, "Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators," Optics Letters, Vol. 40, No. 13, 3197-3200, 2015.
    doi:10.1364/OL.40.003197

    33. Liu, R., T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, "Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory," Physical Review E, Vol. 76, No. 2, 026606, Aug. 23, 2007.
    doi:10.1103/PhysRevE.76.026606

    34. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, No. 10, 7181-7188, May 12, 2008.
    doi:10.1364/OE.16.007181

    35. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B, Vol. 78, No. 24, 241103, Dec. 19, 2008.
    doi:10.1103/PhysRevB.78.241103

    36. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, Mar. 22, 2005.
    doi:10.1103/PhysRevE.71.036617

    37. Li, L., Y. Yang, and C. Liang, "A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes," Journal of Applied Physics, Vol. 110, No. 6, 063702, Sep. 15, 2011.
    doi:10.1063/1.3638118

    38. Lu, L., S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual directional absorption metamaterial absorber," Progress In Electromagnetics Research M, Vol. 27, 91-201, 2012.
    doi:10.2528/PIERM12102101

    39. Zhai, H., C. Zhan, L. Liu, and Y. Zang, "Reconfigurable wideband metamaterial absorber with wide angle and polarisation stability," Electronics Letters, Vol. 51, No. 21, 1624-1626, Oct. 1, 2015.
    doi:10.1049/el.2015.1557

    40. Palandoken, M., "Microstrip antenna with compact anti-spiral slot resonator for 2.4GHz energy harvesting applications," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1404-1408, 2016.
    doi:10.1002/mop.29824