Vol. 77
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-08-26
Dual-Band Polarization-Insensitive Metamaterial Inspired Microwave Absorber for LTE-Band Applications
By
Progress In Electromagnetics Research C, Vol. 77, 91-100, 2017
Abstract
In this paper, the design, simulation andmeasurementof a dual-band polarizationinsensitive metamaterial inspired microwave absorber are presented.The unit cell is composed of two concentric closed ring resonator(CRR) structures forming octagonal rings which arecarved on an FR-4 dielectric substrate to give maximum absorption at dual frequencies of 2.09 GHz and 2.54 GHz. At these frequencies, the minimum reflection coefficients of -29.15 dB and -18.76 dB are achieved with absorption rates of 99.88% and 98.67% andnarrow 10 dB bandwidths of 2.62% and 2.76%, respectively. Microwave absorption property of the proposed absorber structure is simulated by setting the perfect electric boundary conditions in four planes whose surface normal vectors are directed perpendicular to the wave propagation direction. These numerical computation settings replicate the rectangular waveguideto be used in the experimental measurements for the comparison between the simulated and experimental results. It is experimentally verifiedby the waveguide measurement method that the absorption rates about 99% are achieved for dual bands with polarization insensitivity, thereby meeting the absorption requirements of LTE-band frequenciesfor a real time microwave absorber based energy harvesting systems.
Citation
Kanwar Preet Kaur, Trushit K. Upadhyaya, and Merih Palandoken, "Dual-Band Polarization-Insensitive Metamaterial Inspired Microwave Absorber for LTE-Band Applications," Progress In Electromagnetics Research C, Vol. 77, 91-100, 2017.
doi:10.2528/PIERC17060502
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Smith, D. R., J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, Aug. 6, 2004.
doi:10.1126/science.1096796

3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184, May 1, 2000.
doi:10.1103/PhysRevLett.84.4184

4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Nov. 22, 2005.

5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, Nov. 10, 2006.
doi:10.1126/science.1133628

6. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, No. 4, 224-227, Apr. 1, 2007.
doi:10.1038/nphoton.2007.28

7. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966, Oct. 30, 2000.
doi:10.1103/PhysRevLett.85.3966

8. Fang, N. and X. Zhang, "Imaging properties of a metamaterial superlens," Applied Physics Letters, Vol. 82, No. 2, 161-163, Jan. 13, 2003.
doi:10.1063/1.1536712

9. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Novel stacked μ-negative materialloaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 02, 229-235, Mar. 1, 2016.
doi:10.1017/S175907871400138X

10. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index materialinspired 90-deg electrically tilted ultra-wideband resonator," Optical Engineering, Vol. 53, No. 10, 107104, Oct. 1, 2014.
doi:10.1117/1.OE.53.10.107104

11. Palandoken, M., Artificial Materials Based Microstrip Antenna Design, INTECH Open Access Publisher, 2011.

12. Niesler, F. B., J. K. Gansel, S. Fischbach, and M. Wegener, "Metamaterial metal-based bolometers," Applied Physics Letters, Vol. 100, No. 20, 203508, May 14, 2012.
doi:10.1063/1.4714741

13. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, May 21, 2008.
doi:10.1103/PhysRevLett.100.207402

14. Zhu, B., Z.Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

15. Cheng, Y. and H. Yang, "Design, simulation, and measurement of metamaterial absorber," Journal of Applied Physics, Vol. 108, No. 3, 034906, Aug. 1, 2010.
doi:10.1063/1.3311964

16. Dincer, F., M. Karaaslan, E. Unal, K. Delihacioglu, and C. Sabah, "Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators," Progress In Electromagnetics Research, Vol. 144, 123-132, 2014.
doi:10.2528/PIER13111403

17. Ramya, S. and I. Srinivasa Rao, "Design of polarization-insensitive dual band metamaterial absorber," Progress In Electromagnetics Research M, Vol. 50, 23-31, 2016.
doi:10.2528/PIERM16070501

18. He, X. J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.
doi:10.2528/PIER11022307

19. Shen, X., Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, "Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation," Applied Physics Letters, Vol. 101, No. 15, 154102, Oct. 8, 2012.
doi:10.1063/1.4757879

20. Wang, G. D., J. F. Chen, X. Hu, Z. Q. Chen, and M. Liu, "Polarization-insensitive triple-band microwave metamaterial absorber based on rotated square rings," Progress In Electromagnetics Research, Vol. 145, 175-183, 2014.
doi:10.2528/PIER14010401

21. Sood, D., "A triple band ultra-thin metamaterial absorber with wide incident angle stability," Indian Journal of Radio & Space Physics (IJRSP), Vol. 45, No. 2, 57-66, Dec. 29, 2016.

22. Yahiaoui, R., J. P. Guillet, F. de Miollis, and P. Mounaix, "Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications," Optics Letters, Vol. 38, No. 23, 4988-4990, 2013.
doi:10.1364/OL.38.004988

23. Agarwal, M., A. K. Behera, and M. K. Meshram, "Wide-angle quad-band polarization-insensitive metamaterial absorber," Electronics Letters, Vol. 52, No. 5, 340-342, Jan. 22, 2016.
doi:10.1049/el.2015.4134

24. Wang, N., J. Tong, W. Zhou, W. Jiang, J. Li, X. Dong, and S. Hu, "Novel quadruple-band microwave metamaterial absorber," IEEE Photonics Journal, Vol. 7, No. 1, 1-6, Feb. 2015.

25. Park, J. W., P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, "Multi-band metamaterial absorber based on the arrangement of donut-type resonators," Optics Express, Vol. 21, No. 8, 9691-9702, Apr. 22, 2013.
doi:10.1364/OE.21.009691

26. Chaurasiya, D., S. Ghosh, S. Bhattacharyya, A. Bhattacharya, and K. V. Srivastava, "Compact multi-band polarization-insensitive metamaterial absorber," IET Microwaves, Antennas & Propagation, Vol. 10, No. 1, 94-101, Jan. 9, 2016.
doi:10.1049/iet-map.2015.0220

27. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber," Journal of Applied Physics, Vol. 118, No. 8, 083103, 2015.
doi:10.1063/1.4929449

28. Huang, Y. J., G. J. Wen, J. Li, W. R. Zhu, P. Wang, and Y. H. Sun, "Wide-angle and polarization-independent metamaterial absorber based on snowflake-shaped configuration," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 5, 552-559, Mar. 1, 2013.
doi:10.1080/09205071.2013.756383

29. Ramya, S. and I. Srinivasa Rao, "Dual band microwave metamaterial absorber using loop resonator for electromagnetic interference suppression," Int. J. Appl. Eng. Res., Vol. 10, No. 30, 22712-22715, 2015.

30. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters, Vol. 100, No. 10, 103506, Mar. 5, 2012.
doi:10.1063/1.3692178

31. Liu, Y., S. Gu, C. Luo, and X. Zhao, "Ultra-thin broadband metamaterial absorber," Applied Physics A, Vol. 108, No. 1, 19-24, Jul. 1, 2012.
doi:10.1007/s00339-012-6936-0

32. Yahiaoui, R., K. Hanai, K. Takano, T. Nishida, F. Miyamaru, M. Nakajima, and M. Hangyo, "Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators," Optics Letters, Vol. 40, No. 13, 3197-3200, 2015.
doi:10.1364/OL.40.003197

33. Liu, R., T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, "Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory," Physical Review E, Vol. 76, No. 2, 026606, Aug. 23, 2007.
doi:10.1103/PhysRevE.76.026606

34. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, No. 10, 7181-7188, May 12, 2008.
doi:10.1364/OE.16.007181

35. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B, Vol. 78, No. 24, 241103, Dec. 19, 2008.
doi:10.1103/PhysRevB.78.241103

36. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, Mar. 22, 2005.
doi:10.1103/PhysRevE.71.036617

37. Li, L., Y. Yang, and C. Liang, "A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes," Journal of Applied Physics, Vol. 110, No. 6, 063702, Sep. 15, 2011.
doi:10.1063/1.3638118

38. Lu, L., S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual directional absorption metamaterial absorber," Progress In Electromagnetics Research M, Vol. 27, 91-201, 2012.
doi:10.2528/PIERM12102101

39. Zhai, H., C. Zhan, L. Liu, and Y. Zang, "Reconfigurable wideband metamaterial absorber with wide angle and polarisation stability," Electronics Letters, Vol. 51, No. 21, 1624-1626, Oct. 1, 2015.
doi:10.1049/el.2015.1557

40. Palandoken, M., "Microstrip antenna with compact anti-spiral slot resonator for 2.4GHz energy harvesting applications," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1404-1408, 2016.
doi:10.1002/mop.29824