Vol. 76

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-08-01

Wide-Angle Polarization Independent Triple Band Absorber Based on Metamaterial Structure for Microwave Frequency Applications

By Khusboo Kumari, Naveen Mishra, and Raghvendra Kumar Chaudhary
Progress In Electromagnetics Research C, Vol. 76, 119-127, 2017
doi:10.2528/PIERC17051703

Abstract

This paper presents a wide-angle polarization independent triple-band absorber based on a metamaterial structure for microwave frequency applications. The designed absorber structure is the combination of two resonators (resonator-I and resonator-II). The proposed absorber is ultra-thin in thickness (0.012λo at lowest resonance frequency and 0.027λo at highest resonance frequency). The proposed absorber structure offers three absorption bands with peak absorptivities of 99.95%, 95.32% and 99.47% at 4.48, 5.34 and 10.43 GHz, respectively. Additionally, it also offers the full width at half maximum (FWHM) bandwidth of 167.2 MHz (4.40 - 4.56 GHz), 178.1 MHz (5.25 - 5.43 GHz) and 393.8 MHz (10.24 - 10.63 GHz), respectively. The metamaterial property of the designed absorber structure has been discussed by using dispersion diagram plot. The designed absorber structure exhibits wide-angle absorption at various oblique incidence angle for both TM and TE polarizations. The absorption mechanism of the designed absorber structure has been analyzed through electric field and surface current distribution plots. The input impedance of the designed absorber (375.67 Ω at 4.48 GHz and 346.73 Ω at 10.43 GHz), nearly matches the free space impedance. The proposed absorber structure is fabricated and measured. Simulated and measured results are in good agreement with each other.

Citation


Khusboo Kumari, Naveen Mishra, and Raghvendra Kumar Chaudhary, "Wide-Angle Polarization Independent Triple Band Absorber Based on Metamaterial Structure for Microwave Frequency Applications," Progress In Electromagnetics Research C, Vol. 76, 119-127, 2017.
doi:10.2528/PIERC17051703
http://jpier.org/PIERC/pier.php?paper=17051703

References


    1. Caloz, C. and T. Itoh, Electromagnetic: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Inc., 2006.

    2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    3. Veselago, V. G., "The Electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekh Usp. Fiz. Nauk, Vol. 92, 509-514, 1964.

    4. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2081, 1999.
    doi:10.1109/22.798002

    5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low-frequency plasmons in thin wire structures," J. Physics, Condensed Matter, Vol. 10, 4785-4809, 1998.
    doi:10.1088/0953-8984/10/22/007

    6. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2011.
    doi:10.1126/science.1058847

    7. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Lett., Vol. 58, 71-75, 2016.
    doi:10.1002/mop.29494

    8. Bilotti, F., S. Tricarico, and L. Vegni, "Plasmonic metamaterial cloaking at optical frequencies," IEEE Transactions on Nanotechnology, Vol. 9, 55-61, 2010.
    doi:10.1109/TNANO.2009.2025945

    9. Fouad, M. A. and M. A. Abdalla, "New π-T generalised metamaterial negative refractive index transmission line for a compact coplanar waveguide triple band pass filter applications," IET Microw. Antennas Propag., Vol. 8, 1097-1104, 2014.
    doi:10.1049/iet-map.2013.0698

    10. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," J. Appl. Phys., Vol. 110, 014909, 2011.
    doi:10.1063/1.3608246

    11. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    12. Lin, B.-Q., S.-H. Zhao, X.-Y. Da, Y.-W. Fang, J.-J. Ma, W. Li, and Z. H. Zhu, "Design of an ultracompact metamaterial absorber," Microwave and Optical Technology Lett., Vol. 57, 1439-1441, 2015.
    doi:10.1002/mop.29099

    13. Thummaluru, S. R., N. Mishra, and R. K. Chaudhary, "Design and analysis of an ultra-thin X-band polarization — insensitive metamaterial absorber," Microwave Optical Technology Lett., Vol. 58, 2481-2485, 2016.
    doi:10.1002/mop.30071

    14. Zhai, H., Z. Li, L. Li, and C. Liang, "A dual-band wide-angle polarization-insensitive ultrathin gigahertz metamaterial absorber," Microwave and Optical Technology Lett., Vol. 55, 1606-1609, 2013.
    doi:10.1002/mop.27622

    15. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters, Vol. 100, 103506, 2012.
    doi:10.1063/1.3692178

    16. Bian, B., S. Liu, S. Wang, X. K. Kong, H. Zhang, B. Ma, and H. Yang, "Novel tripleband polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," Journal of Applied Physics, Vol. 114, 194511, 2013.
    doi:10.1063/1.4832785

    17. Huang, X., H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, "Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber," Journal of Applied Physics, Vol. 113, 213516, 2013.
    doi:10.1063/1.4809655

    18. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physics Review E, Vol. 71, 036617, 2005.
    doi:10.1103/PhysRevE.71.036617