Vol. 76

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-07-18

Dual-Polarized Multi-Band Infrared Energy Harvesting Using h -Shaped Metasurface Absorber

By Thamer Almoneef and Omar M. Ramahi
Progress In Electromagnetics Research C, Vol. 76, 1-10, 2017
doi:10.2528/PIERC17042105

Abstract

We present the design of an infrared metasurface harvester based on the full absorption concept. The metasurface unit cells consist of an H-shaped resonator with the load placed across the gap of the resonator. Different from infrared metamaterial absorber designs, the resonator is capable of not only full absorption but also maximum energy channeling across the load resistance. Numerical simulation demonstrates that 96% of the absorbed energy is dissipated across the load resistance. In addition, cross-polarized H-resonators design is presented, which is capable of harvesting infrared energy using dual polarizations within three frequency bands.

Citation


Thamer Almoneef and Omar M. Ramahi, "Dual-Polarized Multi-Band Infrared Energy Harvesting Using h -Shaped Metasurface Absorber," Progress In Electromagnetics Research C, Vol. 76, 1-10, 2017.
doi:10.2528/PIERC17042105
http://jpier.org/PIERC/pier.php?paper=17042105

References


    1. Mankins, J. C., The Case for Space Solar Power, Virginia Edition Publishing, 2014.

    2. Myers, D. R., Solar Radiation: Practical Modeling for Renewable Energy Applications, CRC Press, 2013.

    3. Luque, A., "Will we exceed 50% effciency in photovoltaics?," Journal of Applied Physics, Vol. 110, No. 3, 2011. [Online], Available: http://scitation.aip.org/content/aip/journal/jap/110/3/10.1063/1.3600702.
    doi:10.1063/1.3600702

    4. Kotter, D. K., S. D. Novack, W. Slafer, and P. Pinhero, "Theory and manufacturing processes of solar nanoantenna electromagnetic collectors," Journal of Solar Energy Engineering, Vol. 132, No. 1, 011014, 2010.
    doi:10.1115/1.4000577

    5. Shockley, W. and H. J. Queisser, "Detailed balance limit of efficiency of pn junction solar cells," Journal of Applied Physics, Vol. 32, No. 3, 1961.
    doi:10.1063/1.1736034

    6. King, R. R., D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, "40 gainpgainasge multijunction solar cells," Applied Physics Letters,, Vol. 90, No. 18, 2007. [Online], Available: http://scitation.aip.org/content/aip/journal/apl/90/18/10.1063/1.2734507.
    doi:10.1063/1.2734507

    7. Bailey, R. L., "A proposed new concept for a solar-energy converter," Journal of Engineering for Gas Turbines and Power, Vol. 94, No. 2, 73-77, 1972.
    doi:10.1115/1.3445660

    8. Grover, S. and G. Moddel, "Applicability of Metal/Insulator/Metal (MIM) diodes to solar rectennas," IEEE Journal of Photovoltaics, Vol. 1, No. 1, 78-83, July 2011.
    doi:10.1109/JPHOTOV.2011.2160489

    9. Dregely, D., R. Taubert, J. Dorfm¨uller, R. Vogelgesang, K. Kern, and H. Giessen, "3d optical yagi-uda nanoantenna array," Nature Communications, Vol. 2, 267, 2011.
    doi:10.1038/ncomms1268

    10. Novotny, L. and N. Van Hulst, "Antennas for light," Nature Photonics, Vol. 5, No. 2, 83-90, 2011.
    doi:10.1038/nphoton.2010.237

    11. Kosako, T., Y. Kadoya, and H. F. Hofmann, "Directional control of light by a nano-optical yagi-uda antenna," Nature Photonics, Vol. 4, No. 5, 312-315, 2010.
    doi:10.1038/nphoton.2010.34

    12. Viti, L., J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, "Black phosphorus terahertz photodetectors," Advanced Materials, Vol. 27, No. 37, 5567-5572, 2015.
    doi:10.1002/adma.201502052

    13. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, No. 1, 80-87, 2015.
    doi:10.1021/acs.nanolett.5b02901

    14. Viti, L., J. Hu, D. Coquillat, A. Politano, C. Consejo, W. Knap, and M. S. Vitiello, "Heterostructured hbn-bp-hbn nanodetectors at terahertz frequencies," Advanced Materials, Vol. 28, No. 34, 7390-7396, 2016.
    doi:10.1002/adma.201601736

    15. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 2016.

    16. Mitrofanov, O., L. Viti, E. Dardanis, M. C. Giordano, D. Ercolani, A. Politano, L. Sorba, and M. S. Vitiello, "Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging," Scientific Reports, Vol. 7, 2017.

    17. Sabaawi, A., C. Tsimenidis, and B. Sharif, "Analysis and modeling of infrared solar rectennas,", Vol. 19, No. 3, 9 000 208-9 000 208, May 2013.

    18. Gadalla, M., M. Abdel-Rahman, and A. Shamim, "Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification," Scientific Reports, Vol. 4, 2014.

    19. Feuillet-Palma, C., Y. Todorov, A. Vasanelli, and C. Sirtori, "Strong near field enhancement in THz nano-antenna arrays," Scientific Reports, Vol. 3, 2013.

    20. Ramahi, O., T. Almoneef, M. Alshareef, and M. Boybay, "Metamaterial particles for electromagnetic energy harvesting," Applied Physics Letters, Vol. 101, No. 17, 173 903-173 903, 2012.
    doi:10.1063/1.4764054

    21. Almoneef, T. S. and O. M. Ramahi, "Metamaterial electromagnetic energy harvester with near unity efficiency," Applied Physics Letters, Vol. 106, No. 15, 153902, 2015.
    doi:10.1063/1.4916232

    22. Avitzour, Y., Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negativeindex plasmonic metamaterial," Phys. Rev. B, Vol. 79, 045131, Jan. 2009. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevB.79.045131.
    doi:10.1103/PhysRevB.79.045131

    23. Wang, B.-X., L.-L. Wang, G.-Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, "Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber," IEEE Photonics Technology Letters, Vol. 26, No. 2, 111-114, Jan. 2014.
    doi:10.1109/LPT.2013.2289299

    24. Xiong, X., Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, "Polarizationdependent perfect absorbers/re ectors based on a three-dimensional metamaterial," Phys. Rev. B, Vol. 88, 115105, Sep. 2013. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevB.88.115105.
    doi:10.1103/PhysRevB.88.115105

    25. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly exible ultrathin metamaterial absorber," Journal of Applied Physics, Vol. 118, No. 8, 083103, 2015. [Online], Available: http://dx.doi.org/10.1063/1.4929449.
    doi:10.1063/1.4929449

    26. Yahiaoui, R., J. P. Guillet, F. de Miollis, and P. Mounaix, "Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications," Opt. Lett., Vol. 38, No. 23, 4988-4990, Dec. 2013. [Online], Available: http://ol.osa.org/abstract.cfm?FURI=ol-38-23-4988.
    doi:10.1364/OL.38.004988

    27. Yahiaoui, R., K. Hanai, K. Takano, T. Nishida, F. Miyamaru, M. Nakajima, and M. Hangyo, "Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators," Opt. Lett., Vol. 40, No. 13, 3197-3200, Jul. 2015. [Online], Available: http://ol.osa.org/abstract.cfm?URI=ol-40-13-3197.
    doi:10.1364/OL.40.003197

    28. Liu, X., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Phys. Rev. Lett., Vol. 104, 207403, May 2010. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevLett.104.207403.
    doi:10.1103/PhysRevLett.104.207403

    29. AlShareef, M. and O. M. Ramahi, "Electrically small resonators for energy harvesting in the infrared regime," Journal of Applied Physics, Vol. 144, 223 101-223 105, 2013.
    doi:10.1063/1.4846076

    30. Shrekenhamer, D., W.-C. Chen, and W. J. Padilla, "Liquid crystal tunable metamaterial absorber," Phys. Rev. Lett., Vol. 110, 177403, Apr. 2013.
    doi:10.1103/PhysRevLett.110.177403

    31. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Phys. Rev. Lett., Vol. 99, 063908, Aug. 2007. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevLett.99.063908.
    doi:10.1103/PhysRevLett.99.063908

    32., , CST STUDIO SUITE, “CST Computer Simulation Technology AG,” www.cst.com.

    33. Ordal, M., L. Long, R. Bell, S. Bell, R. Bell, R. Alexander, and C. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Applied Optics, Vol. 22, No. 7, 1099-1119, 1983.
    doi:10.1364/AO.22.001099