Vol. 79

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-11-05

High Gain Slotted Waveguide Antenna Based on Beam Focusing Using Electrically Split Ring Resonator Metasurface Employing Negative Refractive Index Medium

By Adel A. A. Abdelrehim and Hooshang Ghafouri-Shiraz
Progress In Electromagnetics Research C, Vol. 79, 115-126, 2017
doi:10.2528/PIERC17020705

Abstract

In this paper, a new high performance slotted waveguide antenna incorporated with negative refractive index metamaterial structure is proposed, designed and experimentally demonstrated. The metamaterial structure is constructed from a multilayer two-directional structure of electrically split ring resonator which exhibits negative refractive index in direction of the radiated wave propagation when it is placed in front of the slotted waveguide antenna. As a result, the radiation beams of the slotted waveguide antenna are focused in both E and H planes, and hence the directivity and the gain are improved, while the beam area is reduced. The proposed antenna and the metamaterial structure operating at 10 GHz are designed, optimized and numerically simulated by using CST software. The effective parameters of the eSRR structure are extracted by Nicolson Ross Weir (NRW) algorithm from the s-parameters. For experimental verification, a proposed antenna operating at 10 GHz is fabricated using both wet etching microwave integrated circuit technique (for the metamaterial structure) and milling technique (for the slotted waveguide antenna). The measurements are carried out in an anechoic chamber. The measured results show that the E plane gain of the proposed slotted waveguide antenna is improved from 6.5 dB to 11 dB as compared to a conventional slotted waveguide antenna. Also, the E plane beamwidth is reduced from 94.1 degrees to about 50 degrees. The antenna return loss and bandwidth are slightly changed. Furthermore, the proposed antenna offers easier fabrication processes with a high gain than the horn antenna, particularly if the proposed antenna is scaled down in dimensionality to work in the THz regime.

Citation


Adel A. A. Abdelrehim and Hooshang Ghafouri-Shiraz, "High Gain Slotted Waveguide Antenna Based on Beam Focusing Using Electrically Split Ring Resonator Metasurface Employing Negative Refractive Index Medium," Progress In Electromagnetics Research C, Vol. 79, 115-126, 2017.
doi:10.2528/PIERC17020705
http://jpier.org/PIERC/pier.php?paper=17020705

References


    1. Kang, M., N. H. Shen, J. Chen, J. Chen, Y. X. Fan, J. Ding, and P. Wu, "A new planar left-handed metamaterial composed of metal-dielectric-metal structure," Optics Express, Vol. 16, No. 12, 8617-8622, 2008.
    doi:10.1364/OE.16.008617

    2. Luk’yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials,", Vol. 9, No. 9, 707-715, 2010.

    3. Omelyanovich, M., V. Ovchinnikov, and C. Simovski, "A non-resonant dielectric metamaterial for the enhancement of thin-film solar cells," Journal of Optics, Vol. 17, No. 2, 025102, 2015.
    doi:10.1088/2040-8978/17/2/025102

    4. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966, 2000.
    doi:10.1103/PhysRevLett.85.3966

    5. Zharov, A. A., N. A. Zharova, R. E. Noskov, I. V. Shadrivov, and Y. S. Kivshar, "Birefringent left-handed metamaterials and perfect lenses for vectorial fields," New Journal of Physics, Vol. 7, No. 1, 220, 2005.
    doi:10.1088/1367-2630/7/1/220

    6. Grbic, A. and G. V. Eleftheriades, "A backward-wave antenna based on negative refractive index LC networks," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 340-343, 2002.
    doi:10.1109/APS.2002.1016992

    7. Grbic, A. and G. V. Eleftheriades, "Experimental verification of backward-wave radiation from a negative refractive index metamaterial," Journal of Applied Physics, Vol. 92, No. 10, 5930-5935, 2002.
    doi:10.1063/1.1513194

    8. Chen, X., H. F. Ma, X. M. Yang, Q. Cheng, W. X. Jiang, and T. J. Cui, "X-band high directivity lens antenna realized by gradient index metamaterials," Proc. Asia Pac. Microw. Conf. (APMC), Vol. 1–5, 793-797, 2009.

    9. Yuan, Y., C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, "A dual-resonant terahertz metamaterial based on single-particle electric-fieldcoupled resonators," Appl. Phys. Lett., Vol. 93, No. 19, 191110, 2008.
    doi:10.1063/1.3026171

    10. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    11. Chin, J. Y., J. N. Gollub, J. J. Mock, R. P. Liu, C. Harrison, D. R. Smith, and T. J. Cui, "An efficient broadband metamaterial wave retarder," Opt. Express, Vol. 17, No. 9, 7640-7647, 2009.
    doi:10.1364/OE.17.007640

    12. Chen, X., H. F. Ma, X. M. Yang, Q. Cheng, W. X. Jiang, and T. J. Cui, "X-band high directivity lens antenna realized by gradient index metamaterials," Proc. Asia Pac. Microw. Conf. (APMC), Vol. 1–5, 793-797, 2009.

    13. Xiao, Z. G. and H. L. Xu, "Low refractiveMTMs for gain enhancement of horn antenna," J. Infrared Millimeter Terahertz Waves, Vol. 30, No. 3, 225-232, 2009.
    doi:10.1007/s10762-008-9449-3

    14. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Efficient, high gain with low side lobe level antenna structures using parasitic patches on multilayer superstrate," Microwave and Optical Technology Letters, Vol. 54, No. 6, 1488-1493, 2012.
    doi:10.1002/mop.26818

    15. Choi, W., Y. H. Cho, C. S. Pyo, and J. I. Choi, "A high-gain microstrip patch array antenna using a superstrate layer," ETRI Journal, Vol. 25, No. 5, 407-411, 2003.
    doi:10.4218/etrij.03.0102.0002

    16., Parabolic Reflector Antennas, U.S. Patent 3,572,071, issued March 23, 1971.

    17. Pendry, J., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 4166-4169, 2000.
    doi:10.1103/PhysRevLett.85.3966

    18. Islam, M. M., M. T. Islam, M. Samsuzzaman, M. R. I. Faruque, N. Misran, and M. F. Mansor, "A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications," Materials, Vol. 8, No. 2, 392-407, 2015.
    doi:10.3390/ma8020392

    19. Alibakhshi-Kenari, M. and M. Naser-Moghadasi, "Novel UWB miniaturized integrated antenna based on CRLH metamaterial transmission lines," AEU-International Journal of Electronics and Communications, Vol. 69, No. 8, 1143-1149, 2015.
    doi:10.1016/j.aeue.2015.04.017

    20. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, 213902, 2002.
    doi:10.1103/PhysRevLett.89.213902

    21. Xu, H., Z. Zhao, Y. Lv, C. Du, and X. Luo, "Metamaterial superstrate and electromagnetic bandgap substrate for high directive antenna," Int. J. Infrared Milli Waves, Vol. 29, 493-498, 2008.
    doi:10.1007/s10762-008-9344-y

    22. Ju, J., D. Kim, W. J. Lee, and J. I. Choi, "Wideband high-gain antenna using metamaterial superstrate with the zero refractive index," Microwave and Optical Tech. Lett., Vol. 51, No. 8, 1973-1976, 2009.
    doi:10.1002/mop.24469

    23. Temelkuaran, B., M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K.M. Ho, "Photonic crystal-based resonant antenna with a very high directivity," Journal of Applied Physics, Vol. 87, 603-605, 2000.
    doi:10.1063/1.371905

    24. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1632-1643, June 2006.
    doi:10.1109/TAP.2006.875470

    25. Tang, M., S. Xiao, D.Wang, J. Xiong, K. Chen, and B.Wang, "Negative index of reflection in planar metamaterial composed of single split-ring resonators," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 26, No. 3, 250-258, March 2011.

    26. Averitt, R. D., W. J. Padilla, H. T. Chen, J. F. O’Hara, A. J. Taylor, C. Highstrete, and A. C. Gossard, "Terahertz metamaterial devices," Optics East 2007 (677209-677209), International Society for Optics and Photonics, September 2007.

    27. Maritz, A. J. N., "Investigation and design of a slotted waveguide antenna with low 3D sidelobes,", Doctoral dissertation, Stellenbosch University, 2010.

    28. Mahmud, R., T. He, M. Lancaster, Y.Wang, and X. Shang, "Micromachined travelling wave slotted waveguide antenna array for beam-scanning applications,", 2014.

    29. Li, Y., I. Mehdi, A. Maestrini, R. H. Lin, and J. Papapolymerou, "A broadband 900-GHz silicon micromachined two-anode frequency tripler," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 6, 1673-1681, 2011.
    doi:10.1109/TMTT.2011.2130534

    30. Grabowski, M., "Non-Resonant Slotted Waveguide Antenna Design Method," High Frequency Electronics, 2012.

    31. Chen, X., T. Grzegorczyk, B. Wu, J. Pacheco, and J. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 2004.

    32. Arslanagic, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, 2013.
    doi:10.1109/MAP.2013.6529320

    33. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by timedomain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
    doi:10.1109/TIM.1970.4313932

    34. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, 52-57, 1997.
    doi:10.1109/22.552032

    35. Campione, S., S. Steshenko, M. Albani, and F. Capolino, "Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres," Optics Express, Vol. 19, No. 27, 26027-26043, 2011.
    doi:10.1364/OE.19.026027

    36. Carrasco, E., M. Barba, and J. Encinar, "X-band reflectarray antenna with switching-beam using pin diodes and gathered elements," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5700-5708, 2012.
    doi:10.1109/TAP.2012.2208612

    37. Vallecchi, A. and G. B. Gentili, "A shaped-beam hybrid coupling microstrip planar array antenna for X-band dual polarization airport surveillance radars," The Second European Conf. on Antennas and Propagation, 2007, EuCAP 2007, 1-7, November 2007.

    38. Kuo, F. Y. and R. B. Hwang, "High-isolation X-band marine radar antenna design," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2331-2337, 2014.
    doi:10.1109/TAP.2014.2307296

    39. Jung, E. Y., et al., "SIW-based array antennas with sequential feeding for X-band satellite communication," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3632-3639, 2012.
    doi:10.1109/TAP.2012.2201075

    40. Kurzweil-Segev, Y., M. Brodsky, A. Polsman, E. Safrai, Y. Feldman, S. Einav, and P. Ben Ishai, "Remote monitoring of phasic heart rate changes from the palm," IEEE Transactions on Terahertz Science and Technology, Vol. 4, No. 5, 618-623, 2014.
    doi:10.1109/TTHZ.2014.2330196

    41. Sun, M., Z. N. Chen, H. Tanoto, Q. Y. Wu, J. H. Teng, and S. B. Yeap, "Design of continuouswave photomixer driven terahertz dipole lens antennas," APSIPA Annual Summit and Conference, 14-17, December 2010.