Vol. 73

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-04-11

Precise Finite Difference Analysis of Lorentz Force Acting on Metal Nanoparticle Irradiated with Light

By Takashi Yamaguchi, Mizue Ebisawa, and Shinichiro Ohnuki
Progress In Electromagnetics Research C, Vol. 73, 81-86, 2017
doi:10.2528/PIERC17020202

Abstract

A finite difference method in the frequency domain is evaluated to clarify characteristics of the Lorentz force exerted on a metal nanoscale particle by light irradiation. Numerical results are compared with exact values obtained from Mie theory to show that applying a smoothing algorithm to the surface of a nanoparticle increases the accuracy of the simulation. Analysis of the Lorentz force exerted between two spheres aligned closely indicates that strong forces cause the spheres to attract each other at the plasmon resonant frequency. It was also noticed that application of the smoothing algorithm was indispensable in order to achieve the above result.

Citation


Takashi Yamaguchi, Mizue Ebisawa, and Shinichiro Ohnuki, "Precise Finite Difference Analysis of Lorentz Force Acting on Metal Nanoparticle Irradiated with Light," Progress In Electromagnetics Research C, Vol. 73, 81-86, 2017.
doi:10.2528/PIERC17020202
http://jpier.org/PIERC/pier.php?paper=17020202

References


    1. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater., Vol. 7, 442-453, 2008.
    doi:10.1038/nmat2162

    2. Guoa, L., J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, "Strategies for enhancing the sensitivity of plasmonic nanosensors," Nano Today, Vol. 10, No. 2, 213-239, 2015.
    doi:10.1016/j.nantod.2015.02.007

    3. Hsu, C. W., B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Solijaci, "Transparent displays enabled by resonant nanoparticle scattering," Nat. Commun., Vol. 5, 2014.

    4. Colomban, P., "The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze Age to Present Times in lustre pottery and glass: Solid state chemistry, spectroscopy and nanostructure," J. Nano Res., Vol. 8, 109-132, 2009.
    doi:10.4028/www.scientific.net/JNanoR.8.109

    5. Blosi, M., S. Albonetti, F. Gatti, G. Baldi, and M. Dondi, "Au-Ag nanoparticles as red pigment in ceramic inks for digital decoration," Dyes Pigm., Vol. 94, 355-362, 2012.
    doi:10.1016/j.dyepig.2012.01.006

    6. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-VCH, Weinheim, Germany, 2008.

    7. Elimelech, M., X. Jia, J. Gregory, and R. Williams, "Particle Deposition and Aggregation: Measurement, Modelling and Simulation," Butterworth-Heinemann, 1995.

    8. Burns, M. M., J. M. Fournier, and J. A. Golovchenko, "Optical binding," Phys. Rev. Lett., Vol. 63, No. 12, 1233-1236, 1989.
    doi:10.1103/PhysRevLett.63.1233

    9. Kimura, K., "Photoinduced coagulation of Au nanocolloids," J. Phys. Chem., Vol. 98, No. 8, 2143-2147, 1994.
    doi:10.1021/j100059a029

    10. Kimura, K., "Photoenhanced van der Waals attractive force of small metallic particles," J. Phys. Chem., Vol. 98, No. 46, 11997-12002, 1994.
    doi:10.1021/j100097a027

    11. Chen, H., S. Liu, J. Zi, and Z. Lin, "Fano resonance-induced negative optical scattering force on plasmonic nanoparticles," ACS Nano, Vol. 9, No. 2, 1926-1935, 2015.
    doi:10.1021/nn506835j

    12. Chen, H., C. Liang, S. Liu, and Z. Lin, "Chirality sorting using two-wave-interference induced lateral optical force," Phys. Rev. A, Vol. 93, No. 5, 053833, 2016.
    doi:10.1103/PhysRevA.93.053833

    13. Chen, H., Y. Jiang, N. Wang, W. Lu, S. Liu, and Z. Lin, "Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves," Opt. Lett., Vol. 40, No. 23, 5530-5533, 2015.
    doi:10.1364/OL.40.005530

    14. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, NY, USA, 1941.

    15. Fujii, M., "Radius-dependent binding or repelling forces exerted on metal nano-sphere clusters by infrared-induced plasmonic resonance," Opt. Commun., Vol. 285, No. 21–22, 4553-4557, 2012.
    doi:10.1016/j.optcom.2012.06.075

    16. Shalin, A. S., P. Ginzburg, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, "Nano-opto-mechanical effects in plasmonic waveguides," Laser. Photon. Rev., Vol. 8, No. 1, 131-136, 2014.
    doi:10.1002/lpor.201300109

    17. Xiao, J. J. and C. T. Chan, "Calculation of the optical force on an infinite cylinder with arbitrary cross section by the boundary element method," J. Opt. Soc. Am. B, Vol. 25, No. 9, 1553-1561, 2008.
    doi:10.1364/JOSAB.25.001553

    18. Sikora, J., M. Panczyk, and P. Wieleba, "Hybrid boundary element method applied for diffusion tomography problems," Computer Vision in Robotics and Industrial Applications, 197-229, World Scientific, 2014.

    19. Chaumet, P. C. and A. Rahmani, "Electromagnetic force and torque on magnetic and negative-index scatters," Opt. Express, Vol. 17, No. 4, 2224-2234, 2009.
    doi:10.1364/OE.17.002224

    20. Demir, V., "Graphics processor unit (GPU) acceleration of finite-difference frequency-domain (FDFD) method," Progress In Electromagnetics Research M, Vol. 23, 29-51, 2012.
    doi:10.2528/PIERM11090909

    21. Deinega, A. and I. Valuev, "Subpixel smoothing for conductive and dispersive media in the finitedifference time-domain method," Opt. Lett., Vol. 32, No. 23, 3429-3431, 2007.
    doi:10.1364/OL.32.003429

    22. Kottke, C., A. Farjadpour, and S. G. Johnson, "Perturbation theory for anisotropic dielectric interfaces, and application to subpixel smoothing of discretized numerical methods," Phys. Rev. E, Vol. 77, 036611, 2008.
    doi:10.1103/PhysRevE.77.036611

    23. Rakic, A. D., A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt., Vol. 37, No. 22, 5271-5283, 1998.
    doi:10.1364/AO.37.005271

    24. Yamaguchi, T., "Finite-difference time-domain analysis of Hemi-Teardrop-shaped near-field optical probe," Electron. Lett., Vol. 44, No. 4, 310-311, 2008.
    doi:10.1049/el:20080068

    25. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Technol. Lett., Vol. 27, No. 5, 334-339, 2000.
    doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

    26. Sleijpen, G. L. G. and D. R. Fokkema, "BiCGstab(l) for linear equations involving unsymmetric matrices with complex spectrum," ETNA, Vol. 1, 11-32, 1993.