Vol. 71

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-02-02

Enhanced Low Profile, Dual-Band Antenna via Novel Electromagnetic Band Gap Structure

By Mohammad El Ghabzouri, Abdenacer Es Salhi, Pedro Anacleto, and Paulo Mendes
Progress In Electromagnetics Research C, Vol. 71, 79-89, 2017
doi:10.2528/PIERC16110904

Abstract

This paper presents a dual-band, low profile antenna with reduced specific absorption rate (SAR) for mobile handset applications. Here, dual-band operation is obtained by combining a printed dipole antenna (initially resonating at 4.3 GHz) with EBG mushroom-like structures loaded with circular slots (CS). The final structure operates at 3.44 GHz (additional band required for LTE Advanced LTE-A) and 4.5 GHz (for Smartphone WLAN applications) with improved bandwidth and reflection coefficient (350-MHz around 3.5 GHz with -26 dB, and 330 MHz around 4.5 GHz with -30 dB). Finally, a dosimetry study of the proposed printed dual-band dipole antenna is presented and verifies an SAR reduction from 9 W/Kg to 1.41W/Kg compared to the same antenna without any loading structure, and from 3.98 W/Kg to 1.41 W/Kg compared to a standard EBG mushroom-like structure.

Citation


Mohammad El Ghabzouri, Abdenacer Es Salhi, Pedro Anacleto, and Paulo Mendes, "Enhanced Low Profile, Dual-Band Antenna via Novel Electromagnetic Band Gap Structure," Progress In Electromagnetics Research C, Vol. 71, 79-89, 2017.
doi:10.2528/PIERC16110904
http://jpier.org/PIERC/pier.php?paper=16110904

References


    1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablanovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    2. Yang, F. and Y. Rahmat-Samii, "A low profile circularly polarized curl antenna over an EBG surface," Microwave Optical Tech. Lett., Vol. 31, No. 4, 264–7, 2001.
    doi:10.1002/mop.10006

    3. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2003.

    4. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterization of an Electromagnetic Band- Gap (EBG) surface," Proc. IEEE AP-S Dig., Vol. 3, 744-747, 2002.

    5. Elsheakh, N., H. A. Elsadek, and E. A. Abdallah, "Investigated new embedded shapes of electromagnetic band gap structures and via effect for improved microstrip patch antenna performanced," Progress In Electromagnetics Research B, Vol. 20, 91-107, 2010.
    doi:10.2528/PIERB09122004

    6. Gujral, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
    doi:10.2528/PIER12022807

    7. Bucci, O. M., T. Isernia, and A. F. Morabito, "Optimal synthesis of circularly symmetric shaped beams," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1954-1964, 2014.
    doi:10.1109/TAP.2014.2302842

    8. Ikeuchi, R. and A. Hirata, "Dipole antenna above EBG substrate for local SAR reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 904-906, 2011.
    doi:10.1109/LAWP.2011.2167119

    9. Zhang, J., J. Wang, M. Chen, and Z. Zhang, "RCS reduction of patch array antenna by Electromagnetic Band-Gap structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1048-1051, 2012.
    doi:10.1109/LAWP.2012.2215832

    10. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "Switchable and tunable notch in ultra-wideband filter using electromagnetic bandgap structure," EEE Microwave and Wireless Components Letters, Vol. 24, No. 12, 2014.

    11. El Ghabzouri, M., A. Es Salhi, and P. M. Mendes, "New technique to drive the central frequency and to improve bandwidth of EBG structures," IEEE Mediterranean Microwave Symposium 2015 (MMS 2015), Lecce, Italy, 2015.

    12. El Ghabzouri, M., A. Es Salhi, and P. M. Mendes, "Shifting the half wave dipole antenna resonance using EBG structure," IEEE International Conference of Microelectronics 2015 (ICM 2015), Casablanca, Morocco, 2015.

    13. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2008.
    doi:10.1017/CBO9780511754531

    14. Fallah, M., F. Hojat-Kashani, and S. H. M. Armaki, "Side effect characterization of EBG structures in microstrip patch antenna," PIERS Proceedings, 323-326, Cambridge, USA, July 5–8, 2010.

    15. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic band gap structure for microstrip patch antenna performance enhancement," Progress In Electromagnetics Research, Vol. 130, 389-409, 2012.
    doi:10.2528/PIER12060702

    16. Ikeuchi, R., K. H. Chan, and A. Hirata, "SAR and radiation characteristics of a dipole antenna above different finite EBG substrates in the presence of the realistic head model in the 3.5 GHz band," Progress In Electromagnetics Research B, Vol. 44, 53-70, 2012.
    doi:10.2528/PIERB12072005

    17. Kulkarni, V. A. and V. S. Navale, "Performance measurement of polarization diversity printed dipole antenna using hight frequency pin diode for WLAN," International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 2, 1917-1923, 2013.

    18. Ma, X., S. Mi, and Y. H. Lee, "Design of a microstrip antenna using square Sierpinski fractal EBG structure," IEEE 4th Asia-Pacific Conference on Antenna and Propagation (APCAP), 2015.

    19. McMichael, I. T., E. C. Nallon, V. P. Waymond, R. Scott, Jr., and M. S. Mirotznik, "EBG antenna for GPR colocated with a mital detector for landmine detection," IEEE Geoscience and Remote Sensing Letters, 1-5, 2013.

    20. Kaharpardeshi, K. T., S. UvaidUllah, and S. Zafar, "Influence of circular patched EBG substrate on SAR and far-field pattern of dipole phase-array antenna," 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, SCEECS, 2014.

    21., , Printed dipole antenna with integrated balun, CST 2014.

    22., , IEEE Std C95.1TM-2005 (Revision of IEEE Std C95.1-1991), April 19, 2006.

    23. Rahim, T. and J. Xu, "Design of high gain and wide band EBG resonator antenna with dual layers of same dielectric superstrate at X-bands," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 15, No. 2, 2016.
    doi:10.1590/2179-10742016v15i2558

    24. Hoang, T. V., T. T. Le, Q. Y. Li, and H. C. Park, "Quad-band circularly polarized antenna for 2.4/5.3/5.8 GHz WLAN and 3.5 GHz WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1032-1035, 2015.

    25. Ayop, O. and M. K. A. Rahim, "Analysis of Mushroom-like electromagnetic band gap structure using suspended transmission line technique," 2011 IEEE International RF and Microwave Conference (RFM 2011), Seremban, Malaysia, 2011.