In this paper, a novel design for a wideband integrated photovoltaic (PV) solar cell patch antenna for 5 GHz Wi-Fi communication is presented and discussed. The design consists of a slot loaded patch antenna with an array of complimentary split ring resonators (cSRR) etched in the ground plane. This is then integrated with a solar cell element placed above the patch, where the ground plane of the solar cell acts as a stacked antenna element from an RF perspective. The design is simulated on CST Microwave Studio and fabricated. The results indicate that an impedance bandwidth of 1 GHz is achieved to cover the 5 GHz Wi-Fi band with a gain of between 7.73 dBi and 8.18 dBi across this band. It is also demonstrated that size reduction of up to 25% can be achieved. Moreover, it is noted that using a metamaterial loaded ground plane acts as an impedance transformer, therefore the antenna can be fed directly with a 50 Ω microstrip feed line, hence further reducing the overall size.
2. O’Conchubhair, O., P. McEvoy, and M. J. Ammann, "Integration of antenna array with multicrystalline silicon solar cell," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1231-1234, 2015.
doi:10.1109/LAWP.2015.2399652
3. Caso, R., A. D’Alessandro, A. Michel, and P. Nepa, "Integration of slot antennas in commercial photovoltaic panels for stand-alone communication systems," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 62-69, Jan. 2013.
doi:10.1109/TAP.2012.2220111
4. Ang, B. K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909
5. Moharram, M. A. and A. A. Kishk, "Optically transparent reflectarray antenna design integrated with solar cells," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1700-1712, May 2016.
doi:10.1109/TAP.2016.2539379
6. Veselago, V. G., "he electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699
7. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
8. Raghavan, S. and V. Anoop Jayaram, "Metamaterial loaded wideband patch antenna," PIERS Proceedings, 760-763, Taipei, Taiwan, Mar. 25–28, 2013.
9. Ju, J., D. Kim, W. J. Lee, and J. I. Choi, "Wideband high gain antenna using metamaterial superstrate with the zero refractive index," Microwave and Optical Technology Letters, Vol. 51, No. 8, 1973-1976, 2009.
doi:10.1002/mop.24469
10. Li, L.-W., Y.-N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, "A broadband and high-gain metamaterial microstrip antenna," Applied Physics Letters, Vol. 96, 164101, 2010.
doi:10.1063/1.3396984
11. Turpin, T. W. and R. Baktur, "Meshed patch antennas integrated on solar cells," IEEE Antennas Wireless Propag. Lett., Vol. 8, 693-696, 2009.
doi:10.1109/LAWP.2009.2025522
12. Yurduseven, O., D. Smith, and M. Elsdon, "UWB meshed solar monopole antenna," Electron. Lett., Vol. 49, No. 9, 582-584, Apr. 2013.
doi:10.1049/el.2013.0478
13. Ito, K. and M. Wu, "See-through microstrip antennas constructed on a transparent substrate," Seventh International Conference on Antennas and Propagation, Vol. 1, 133-136, 1991.
14. Yasin, T., R. Baktur, and C. Furse, "A study on the efficiency of transparent patch antennas designed from conductive oxide films," IEEE International Symposium on Antennas and Propagation (APSURSI), 3085-3087, 2011.
doi:10.1109/APS.2011.5997183
15. Yurduseven, O. and D. Smith, "A solar cell stacked multi-slot quad-band PIFA for GSM, WLAN and WiMAX networks," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 6, 285-287, Jun. 2013.
doi:10.1109/LMWC.2013.2258006
16. Danesh, M. and J. R. Long, "An autonomous wireless sensor node incorporating a solar cell antenna for energy harvesting," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3546-3555, Nov. 2011.
doi:10.1109/TMTT.2011.2171043
17. Vaccaro, S., J. R. Mosig, and P. de Maagt, "Making planar antennas out of solar cells," Electron. Lett., Vol. 38, No. 17, 945-947, Aug. 2002.
doi:10.1049/el:20020675
18. Yurduseven, O., D. Smith, N. Pearsall, and I. Forbes, "A solar cell stacked slot-loaded suspended microstrip patch antenna with multiband resonance characteristics for WLAN and WiMAX systems," Progress In Electromagnetics Research, Vol. 142, 321-332, 2013.
doi:10.2528/PIER13081502