Vol. 72

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-04-05

Ultra-Small Single-Negative Metamaterial Insulator for Mutual Coupling Reduction of High-Profile Monopole Antenna Array

By Yujie Qiu, Lin Peng, Xing Jiang, Zhuzhu Sun, and Shaoyu Tang
Progress In Electromagnetics Research C, Vol. 72, 197-205, 2017
doi:10.2528/PIERC16100803

Abstract

A novel single-negative magnetic (SNG) metamaterial (MTM) insulator is designed to reduce mutual coupling between high-profile monopole antennas. As a kind of metamaterials, the proposed SNG MTM-resonator utilized concentric rings embedded complementary metal structures. Then, an insulator is achieved with a highly compact structure. The band-gap of the insulator is attributed to the negative permeability of the magnetic resonance. A well-engineered MTM-resonator is then embedded in between a high-profile monopole antenna array for coupling reduction. The antenna array is designed, fabricated, and measured. Both numerical and experimental results indicate a mutual coupling reduction of more than 17 dB. The 20 dB isolation bandwidth about 16% is obtained. The proposed prescription with electrically small dimensions and high decoupling efficiency opens an avenue to new types of high-profile antennas with super performances.

Citation


Yujie Qiu, Lin Peng, Xing Jiang, Zhuzhu Sun, and Shaoyu Tang, "Ultra-Small Single-Negative Metamaterial Insulator for Mutual Coupling Reduction of High-Profile Monopole Antenna Array," Progress In Electromagnetics Research C, Vol. 72, 197-205, 2017.
doi:10.2528/PIERC16100803
http://jpier.org/PIERC/pier.php?paper=16100803

References


    1. Hansen, R. C., Phased Array Antennas, Ch. 7, Wiley, New York, 1998.
    doi:10.1002/0471224219

    2. Cai, T., G.-M. Wang, J.-G. Liang, and Y.-Q. Zhuang, "Application of ultra-compact single negative waveguide metamaterial for a low mutual coupling patch antenna array design," Chin. Phys. Lett., Vol. 31, No. 8, 0841011-0841015, 2014.
    doi:10.1088/0256-307X/31/8/084101

    3. Xu, H. X., G.-M. Wang, and M.-Q. Qi, "Hilbert-shaped magnetic waveguided metamaterials for electromagnetic coupling reduction of microstrip antenna array," IEEE Trans. Magn., Vol. 49, No. 4, 1526-1529, 2013.
    doi:10.1109/TMAG.2012.2230272

    4. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and H.-Y. Zeng, "Ultra-small single-negative electric metamaterial for electromagnetic coupling reduction of microstrip antenna array," Opt. Exp., Vol. 20, No. 20, 21968-21976, 2012.
    doi:10.1364/OE.20.021968

    5. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2910, 2007.
    doi:10.1109/TAP.2010.2052560

    6. Sarabandi, K. and Y. J. Song, "Subwavelength radio repeater system utilizing miniaturized antennas and metamaterials channel isolator," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2683-2691, 2011.
    doi:10.1109/TAP.2011.2152320

    7. Jiang, X., Y.-J. Qiu, and L. Peng, "Novel metamaterial insulator for compact array isolation," International Conference on Signal Processing, Communications and Computing, 649-652, Guilin, Guangxi, CN, Aug. 2014.

    8. Buell, K., H. Mosallaei, and K. Sarabandi, "Metamaterial insulator enabled superdirective array," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1074-1085, 2007.
    doi:10.1109/TAP.2007.893373

    9. Hsu, C. C., K. H. Lin, and H. L. Su, "Implementation of broadband isolator using metamaterialinspired resonators and a T-shaped branch for MIMO antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3936-3939, 2011.
    doi:10.1109/TAP.2011.2163741

    10. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
    doi:10.1109/TAP.2003.817983

    11. Assimonis, S. D., T. V. Yioultsis, and C. S. Antonopoulos, "Computational investigation and design of planar EBG structures for coupling reduction in antenna applications," IEEE Trans. Magn., Vol. 48, No. 2, 771-774, 2012.
    doi:10.1109/TMAG.2011.2172680

    12. Chung, Y., et al., "High isolation dual-polarized patch antenna using integrated defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 4-6, 2004.
    doi:10.1109/LMWC.2003.821501

    13. Chiu, C.-Y., C.-H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1732-1738, 2007.
    doi:10.1109/TAP.2007.898618

    14. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phy. Rev. E, Vol. 70, 016608, 2004.
    doi:10.1103/PhysRevE.70.016608

    15. Imbert, M., P. J. Ferrer, J. M. Gonzalez-Arbesu, and J. Romeu, "Assessment of the performance of a metamaterial spacer in a closely spaced multiple-antenna system," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 720-723, 2012.
    doi:10.1109/LAWP.2012.2205210

    16. Dadgarpour, A., B. Zarghooni, and T. A. Denidni, "Mutual-coupling suppression for 60GHz MIMO antenna using metamaterials," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015.

    17. Ferrer, P. J., J. M. Gonzalez-Arbesu, and J. Romeu, "Bidirectional metamaterial separator for compact antenna systems," IEEE Antennas and Propagation Society International Symposium, 2007.