Vol. 70

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-11-26

Enhancing the Resolution of Hyperlens by the Compensation of Losses Without Gain Media

By Xu Zhang, Wyatt Adams, Mehdi Sadatgol, and Durdu Oe Guney
Progress In Electromagnetics Research C, Vol. 70, 1-7, 2016
doi:10.2528/PIERC16083105

Abstract

We present a method to improve the resolution of available hyperlenses in the literature. In this method, we combine the operation of hyperlens with the recently proposed plasmon injection scheme for loss compensation in metamaterials. Image of an object, which is otherwise not resolvable by the hyperlens alone, was reconstructed up to the minimum feature size of one seventh of the free-space wavelength.

Citation


Xu Zhang, Wyatt Adams, Mehdi Sadatgol, and Durdu Oe Guney, "Enhancing the Resolution of Hyperlens by the Compensation of Losses Without Gain Media," Progress In Electromagnetics Research C, Vol. 70, 1-7, 2016.
doi:10.2528/PIERC16083105
http://jpier.org/PIERC/pier.php?paper=16083105

References


    1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
    doi:10.1103/PhysRevLett.85.3966

    2. Smith, D. R., D. Schurig, M. Rosenbluth, and S. Schultz, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett., Vol. 82, 1506, 2003.
    doi:10.1063/1.1554779

    3. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nature Mater., Vol. 7, 435, 2008.
    doi:10.1038/nmat2141

    4. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534, 2005.
    doi:10.1126/science.1108759

    5. Jacob, Z., L. V. Alekseyev, and E. E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247, 2006.
    doi:10.1364/OE.14.008247

    6. Wood, B. and J. B. Pendry, "Directed sub-wavelength imaging using a layered metal-dielectric system," Phys. Rev. B, Vol. 74, 115116, 2006.
    doi:10.1103/PhysRevB.74.115116

    7. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying subdiffraction- limited objects," Science, Vol. 315, 1686, 2007.
    doi:10.1126/science.1137368

    8. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nature Commun., Vol. 1, 143, 2010.
    doi:10.1038/ncomms1148

    9. Sun, J., M. Shalaev, and N. Litchinitster, "Experimental demonstration of a non-resonant hyperlens in the visible spectral range," Nature Commun., Vol. 6, 7201, 2015.
    doi:10.1038/ncomms8201

    10. Gwamuri, J., D. O. Guney, and J. M. Pearce, "Advances in plasmonic light trapping in thin-film solar photovoltaic devices," Solar Cell Nanotechnology, A. Tiwari, R. Boukherroub, and M. Sharon, eds., 243–270, Wiley, Beverly, 2013.

    11. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using plasmonic super absorbers," Nat. Commun., Vol. 2, 517, 2011.
    doi:10.1038/ncomms1528

    12. Temnov, V. V., "Ultrafast acousto-magneto-plasmonics," Nat. Photonics, Vol. 6, 728, 2012.
    doi:10.1038/nphoton.2012.220

    13. Aslam, M. I. and D. O. Guney, "On negative index metamaterial spacers and their unusual optical properties," Progress In Electromagnetics Research B, Vol. 47, 203, 2013.
    doi:10.2528/PIERB12111908

    14. Sadatgol, M., M. Rahman, E. Forati, M. Levy, and D. O. Guney, "Enhanced Faraday rotation in hybrid magneto-optical metamaterial structure of bismuth-substituted-iron-garnet embedded-goldwires," J. Appl. Phys., Vol. 119, 103105, 2016.
    doi:10.1063/1.4943651

    15. Abbe, E., "Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung," Arch. F. Mikr. Anat., Vol. 9, 413-420, 1873.
    doi:10.1007/BF02956173

    16. Poddubny, A., I. Iorsh, P. Belov, and Y. Kivshar, "Hyberbolic metamaterials," Nat. Photonics, Vol. 7, 948, 2013.
    doi:10.1038/nphoton.2013.243

    17. Zhang, X., S. Debnath, and D. O. Guney, "Hyperbolic metamaterial feasible for fabrication with direct laser writing processes," J. Opt. Soc. Am. B, Vol. 32, 1013, 2015.
    doi:10.1364/JOSAB.32.001013

    18. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Reducing ohmic losses in metamterials by geometric tailoring," Phys. Rev. B, Vol. 80, 125129, 2009.
    doi:10.1103/PhysRevB.80.125129

    19. Lee, H., Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express, Vol. 15, 15886, 2007.
    doi:10.1364/OE.15.015886

    20. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Surface plasmon driven electric and magnetic resonators for metamaterials," Phys. Rev. B, Vol. 83, 045107, 2011.
    doi:10.1103/PhysRevB.83.045107

    21. Aslam, M. I. and D. O. Guney, "Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum," Phys. Rev. B, Vol. 84, 195465, 2011.
    doi:10.1103/PhysRevB.84.195465

    22. Sadatgol, M., S. K. Ozdemir, L. Yang, and 9D. O. Guney, "Plasmon injection to compensate and control losses in negative index metamaterials," Phys. Rev. Lett., Vol. 115, 35502, 2015.
    doi:10.1103/PhysRevLett.115.035502

    23. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, 735, 2010.
    doi:10.1038/nature09278

    24. Stockman, M. I., "Spaser action, loss compensation, and stability in plasmonic systems with gain," Phys. Rev. Lett., Vol. 106, 156802, 2011.
    doi:10.1103/PhysRevLett.106.156802

    25. Adams, W., M. Sadatgol, X. Zhang, and D. O. Guney, "Bringing the ‘perfect lens’ into focus by near-perfect compensation of losses without gain media,", arXiv: 1607.07464.

    26. Chen, Y., Y.-C. Hsueh, M. Man, and K. J. Webb, "Enhanced and tunable resolution from an imperfect negative refractive index lens," J. Opt. Soc. Am. B, Vol. 33, 445, 2016.
    doi:10.1364/JOSAB.33.000445

    27. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.
    doi:10.1103/PhysRevB.6.4370

    28. Palik, E. D., Handbook of Optical Constants of Solids III, Academic Press, 1998.

    29. Taubner, T., D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science, Vol. 313, 1595, 2006.
    doi:10.1126/science.1131025

    30. Fienup, J. R., "Phase retrieval algorithms: A comparison," Appl. Opt., Vol. 21, 2758, 1982.
    doi:10.1364/AO.21.002758