Vol. 68

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-10-18

A Novel Low RCS Microstrip Antenna Array Using Thin and Wideband Radar Absorbing Structure Based on Embedded Passives Resistors

By Madhu A. Ramkumar, Chandrika Sudhendra, and Kark Rao
Progress In Electromagnetics Research C, Vol. 68, 153-161, 2016
doi:10.2528/PIERC16080506

Abstract

A novel low radar cross section (RCS) microstrip patch antenna array (1×4) (MSPAA) is reported in this paper. A thin and wideband radar absorber (RA) based on a single octagonal loop (SOL) resistive frequency selective surface (FSS) is designed for realizing out-of-band RCS reduction of the MSPAA from 6.2 GHz to 18 GHz. The RA is designed for -15 dB reflectivity from 6.2 GHz to 18 GHz. Embedded Passives (EP) resistors are used for implementing the resistors as integral to the substrate with no soldering at all which results in a quantum improvement in reliability. Full wave analysis of the low RCS MSPAA with the RA is carried out using HFSS. RCS measurements are performed, and an RCS reduction of 6 to 18 dB is attained compared to the reference antenna array over a wide band from 6 GHz to 18 GHz, with no degradation in VSWR and gain of the antenna array. The thin and wideband RA with its low weight and flight worthy constituent materials can be applied independently as skins of a stealthy UAV configured primarily for low RCS with external shaping, and the proposed antenna array can be used without modifications, as a low RCS conformal antenna structure.

Citation


Madhu A. Ramkumar, Chandrika Sudhendra, and Kark Rao, "A Novel Low RCS Microstrip Antenna Array Using Thin and Wideband Radar Absorbing Structure Based on Embedded Passives Resistors," Progress In Electromagnetics Research C, Vol. 68, 153-161, 2016.
doi:10.2528/PIERC16080506
http://jpier.org/PIERC/pier.php?paper=16080506

References


    1. Salisbury, W. W., "U.S. Patent, Absorbent body for electromagnetic waves,", No. 2599944, 1952.

    2. Eugene, F. K., F. J. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., 9-10, Artech House, Norwood, MA, USA, 1993.
    doi:10.1109/TAP.2006.888395

    3. Munk, B., P. Munk, and J. Prior, "On designing Jaumann and circuit analog absorbers for oblique angle of incidence," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 2007.

    4. Sudhendra, C., V. Mahule, A. C. R. Pillai, A. K. Mohanty, and K. Rao, "Novel embedded passives resistor grid network based wideband radar absorber," IEEE Intl. Conf. on Elect., Computing and Comm. Technologies — IEEE CONECCT, 1-4, DOI: 10.1109/CONECCT 2014.6740359, 2014.
    doi:10.1109/TAP.2009.2024490

    5. Zadeh, A. K. and A. Karlsson, "Capacitive circuit method for fast and efficient design of wideband radar absorbers," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2307-2314, Aug. 2009.

    6. Costa, F. and A. Monorchio, "Electromagnetic absorbers based on high-impedance surfaces: From ultra-narrowband to ultra-wideband absorption," Advanced Electromagnetics, Vol. 1, No. 3, Oct. 2012.
    doi:10.1002/mop.28986

    7. Silva, M. W. B., A. L. P. S. Campos, and L. C. Kretly, "Design of thin microwave absorbers using lossy frequency selective surfaces," Microw. Opt. Technol. Lett., Vol. 57, No. 4, Apr. 2015.
    doi:10.1109/5.32056

    8. Hansen, R. C., "Relationships between antennas as scatterers and radiators," Proc. IEEE, Vol. 77, No. 5, 659-662, May 1989.
    doi:10.1109/TAP.2012.2189701

    9. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2327-2335, May 2012.
    doi:10.2528/PIERC14050503

    10. Zheng, J., S. Fang, Y. Jia, and Y. Liu, "RCS reduction of patch array antenna by complementary split-ring resonators structure," Progress In Electromagnetics Research C, Vol. 51, 95-101, 2014.
    doi:10.1049/el.2016.0336

    11. Joozdani, M. Z., M. K. Amirhosseini, and A. Abdolali, "Wideband radar cross-section of patch array antenna with miniaturised hexagonal loop frequency selective surface," Electron. Lett., Vol. 52, No. 9, 767-768, Apr. 2016.
    doi:10.1049/el.2015.1725

    12. Hao, Y., Y. Liu, K. Li, and S. Gong, "Wide band radar cross section reduction of microstrip patch antenna with split-ring resonators," Electron. Lett., Vol. 51, No. 20, 1608-1609, Oct. 2015.
    doi:10.1109/LAWP.2015.2402292

    13. Liu, Y., Y. Hao, H.Wang, K. Li, and S. Gong, "Low RCS microstrip patch antenna using frequencyselective surface and microstrip resonator," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1290-1293, Feb. 2015.
    doi:10.1049/el.2014.1003

    14. Jia, Y., Y. Liu, H. Wang, and S. Gong, "Low RCS microstrip antenna using polarization-dependent frequency selective surface," Electron. Lett., Vol. 50, No. 14, 978-979, 2014.
    doi:10.1049/iet-map:20070012

    15. He, W., R. Jin, and J. Geng, "Low radar cross-section and high performances of microstrip antenna using fractal uniplanar compact electromagnetic band gap ground," IEEE Microw., Antennas Propag., Vol. 1, No. 5, 986-991, 2007.
    doi:10.1002/mop.27144

    16. Miao, Z., C. Huang, X. Ma, M. Pu, X. Ma, Q. Zhao, and X. Luo, "Design of a patch antenna with dual-band radar cross section reduction," Microw. Opt. Technol. Lett., Vol. 54, No. 11, 2516-2520, Nov. 2012.

    17. Zhao, Y., X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, "Broadband metamaterial surface for antenna RCS reduction and gain enhancement," IEEE Trans. Antennas Propag., early access, 2015.
    doi:10.1002/mop.28442

    18. Chen, Q. and Y. Fu, "A planar stealthy antenna Radome using absorptive frequency selective surface," Microw. Opt. Technol. Lett., Vol. 56, No. 8, 1788-1792, 2014.
    doi:10.1109/TAP.2016.2518199

    19. Huang, C., W. Pan, X. Ma, and X. Luo, "A frequency reconfigurable directive antenna with wideband low-RCS property," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 1173-1178, Jan. 2016.

    20. Liu, Y., Y. Hao, K. Li, and S. Gong, "Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial," IEEE Antennas Wireless Propag. Lett, Vol. 15, 80-83, May 2015.
    doi:10.1002/mop.28442

    21. Zheng, Y.-J., J. Gao, X.-Y. Cao, S.-J. Li, and W.-Q. Lli, "Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate," Microw. Opt. Technol. Lett., Vol. 56, No. 8, 1788-1792, 2014.

    22. Zheng, J. and S. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 57, No. 7, 1738-1741, Jul. 2015.
    doi:10.1109/LAWP.2015.2407375

    23. Huang, C., W. Pan, X. Ma, B. Jiang, and X. Luo, "Wideband radar cross section reduction of a stacked patch array antenna using metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1369-1372, 2015.
    doi:10.1109/8.884491

    24. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Trans. Antennas Propag., Vol. 48, No. 8, 1230-1234, Aug. 2000.