Vol. 68

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-10-24

Efficient Higher-Order Analysis of Electromagnetic Scattering of Objects in Half-Space by Domain Decomposition Method with a Hybrid Solver

By Lan-Wei Guo, Jun Hu, Wan Luo, Lian-Ning Song, and Zai-Ping Nie
Progress In Electromagnetics Research C, Vol. 68, 201-209, 2016
doi:10.2528/PIERC16080408

Abstract

Integral equation domain decomposition method (IE-DDM) with an efficient higher-order method for the analysis of electromagnetic scattering from arbitrary three-dimensional conducting objects in a half-space is conducted in this letter. The original objects are decomposed into several closed subdomains. Due to the flexibility of DDM, it allows different basis functions and fast solvers to be used in different subdomains based on the property of each subdomain. Here, the higher-order vector basis functions defined on curvilinear triangular patches are used in each subdomain with the flexibility of order selection, which significantly reduces the number of unknowns. Then a novel hybrid solver is introduced where the adaptive cross approximation (ACA) and the half-space multilevel fast multipole algorithm (HS-MLFMA) are integrated seamlessly in the framework of IE-DDM. The hybrid solver enhances the capability of IE-DDM and realizes efficient solution for objects above, below, or even straddling the interface of a half-space. Numerical results are presented to validate the efficiency and accuracy of this method.

Citation


Lan-Wei Guo, Jun Hu, Wan Luo, Lian-Ning Song, and Zai-Ping Nie, "Efficient Higher-Order Analysis of Electromagnetic Scattering of Objects in Half-Space by Domain Decomposition Method with a Hybrid Solver," Progress In Electromagnetics Research C, Vol. 68, 201-209, 2016.
doi:10.2528/PIERC16080408
http://jpier.org/PIERC/pier.php?paper=16080408

References


    1. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990, Reprinted by IEEE Press, 1995.

    2. Chen, Y. P., W. C. Chew, and L. Jiang, "A new Green’s function formulation for modeling homogeneous objects in layered medium," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 4766-4776, Oct. 2012.
    doi:10.1109/TAP.2012.2207332

    3. Michalski, K. A. and J. R. Mosig, "Multilayered media Green’s functions in integral equation formulations," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 508-519, Mar. 1997.
    doi:10.1109/8.558666

    4. Chen, Y. P., W. C. Chew, and L. Jiang, "A novel implementation of discrete complex image method for layered medium Green’s function," IEEE Antennas Wireless Propag. Lett., Vol. 10, 419-422, 2011.
    doi:10.1109/LAWP.2011.2152358

    5. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.
    doi:10.1109/TAP.1982.1142818

    6. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 329-342, Mar. 1997.
    doi:10.1109/8.558649

    7. Wang, J. and J. P. Webb, "Hierarchical vector boundary elements and p-adaption for 3-D electromagnetic scattering," IEEE Trans. Antennas Propag., Vol. 47, No. 8, 1244-1253, Aug. 1997.

    8. Jorgensen, E., O. S. Kim, P. Meincke, and O. Breinbjerg, "Higher order hierarchical discretization scheme for surface integral equations for layered media," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 4, 764-772, Apr. 2004.
    doi:10.1109/TGRS.2003.819881

    9. Lai, B., X. An, H. B. Yuan, N. Wang, and C. H. Liang, "AIM analysis of 3D PEC problems using higher order hierarchical basis functions," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1417-1421, Apr. 2010.
    doi:10.1109/TAP.2010.2041153

    10. Zhao, R., et al., "Fast integral equation solution of scattering of multiscale objects by domain decomposition method with mixed basis functions," International Journal of Antennas and Propagation, 1-7, 2015.

    11. Graglia, R. D., A. F. Peterson, and F. P. Andriulli, "Curl-conforming hierarchical vector bases for triangles and tetrahedra," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 950-959, Mar. 2011.
    doi:10.1109/TAP.2010.2103012

    12. Zha, L. P., Y. Q. Hu, and T. Su, "Efficient surface integral equation using hierarchical vector bases for complex EM scattering problems," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 952-957, Feb. 2012.
    doi:10.1109/TAP.2011.2167932

    13. Luo, W., Z. Nie, and Y. P. Chen, "Efficient higher-order analysis of electromagnetic scattering by objects above, below, or straddling a half-space," IEEE Antennas Wireless Propag. Lett., Vol. 15, 332-335, 2016.
    doi:10.1109/LAWP.2015.2443874

    14. Geng, N., A. Sullivan, and L. Carin, "Multilevel fast-multipole algorithm for scattering from conducting targets above or embedded in a lossy half space," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 4, 1561-1573, Jul. 2000.
    doi:10.1109/36.851956

    15. Millard, X. and Q. H. Liu, "Simulation of near-surface detection of objects in layeredmedia by the BCGS-FFT method," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 2, 327-334, Feb. 2004.
    doi:10.1109/TGRS.2003.817799

    16. Zhao, K., M. N. Vouvakis, and J. F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 763-773, Nov. 2005.
    doi:10.1109/TEMC.2005.857898

    17. Luo, W., Z. Nie, and Y. Chen, "Fast analysis of electromagnetic scattering from three-dimensional objects straddling the interface of a half space," IEEE Geosci. Remote Sens. Lett., Vol. 11, No. 7, 1205-1209, Jul. 2014.

    18. Luo, W., Z. Nie, and Y. P. Chen, "A hybrid method for analyzing scattering from PEC bodies straddling a half-space interface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 474-477, 2015.
    doi:10.1109/LAWP.2014.2368772

    19. Peng, Z., X.-C. Wang, and J.-F. Lee, "Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3328-3338, Sep. 2011.
    doi:10.1109/TAP.2011.2161542

    20. Li, D., J. Wei, and J. F. Lee, "A new formulation discontinuous galerkin surface integral equation method for time-harmonic wave scattering problem," IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 195-196, Vancouver, BC, CA, 2015.

    21. Zheng, K. L., H. X. Zhou, and W. Hong, "Integral equation-based nonoverlapping DDM using the explicit boundary condition," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2739-2745, Jun. 2015.
    doi:10.1109/TAP.2015.2412145

    22. Echeverri Bautista, M. A., F. Vipiana, M. A. Francavilla, J. A. Tobon Vasquez, and G. Vecchi, "A nonconformal domain decomposition scheme for the analysis of multiscale structures," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3548-3560, Aug. 2015.
    doi:10.1109/TAP.2015.2430873

    23. Peng, Z., R. Hiptmair, Y. Shao, and B. Mackie-Mason, "Domain decomposition preconditioning for surface integral equations in solving challenging electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 210-223, Jan. 2016.
    doi:10.1109/TAP.2015.2500908

    24. Zhao, R., et al., "A hybrid solvers enhanced integral equation domain decomposition method for modeling of electromagnetic radiation," International Journal of Antennas and Propagation, 1-8, 2015.

    25. Chen, Y. P., S. Sun, L. Jiang, and W. C. Chew, "A Calderon preconditioner for the electric field integral equation with layered medium Green’s function," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2022-2030, Apr. 2014.
    doi:10.1109/TAP.2013.2297396

    26. Donepudi, K. C., K. Gang, J. M. Song, and W. C. Chew, "Higher-order MoM implementation to solve integral equations," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1716-1719, Orlando, FL, USA, 1999.