Vol. 68

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-10-04

A Novel Rectangle Tree Fractal UWB Antenna with Dual Band Notch Characteristics

By Zhangfang Hu, Yinping Hu, Yuan Luo, and Wei Xin
Progress In Electromagnetics Research C, Vol. 68, 21-30, 2016
doi:10.2528/PIERC16072702

Abstract

A novel rectangle tree fractal antenna (RTFA) for ultra-wideband(UWB) application with dual band notch characteristics is proposed. The radiating path is the tree fractal structure which is formed by the superposition of a number of rectangular patches, and multi-frequency resonance characteristics are obtained by only increasing the tree fractal iterations. UWB operation(3.1-10.6GHz) is achieved by using defected ground structure(DGS) on the ground plane to improve the impedance characteristics between adjacent resonant frequencies. The dual notch bands characteristics are realized by three U-slot on the tree fractal path and effectively suppress the interferences of WiMAX and WLAN. The measurement and simulation results have an acceptable agreement, and indicate that the antenna is suitable for UWB applications.

Citation


Zhangfang Hu, Yinping Hu, Yuan Luo, and Wei Xin, "A Novel Rectangle Tree Fractal UWB Antenna with Dual Band Notch Characteristics," Progress In Electromagnetics Research C, Vol. 68, 21-30, 2016.
doi:10.2528/PIERC16072702
http://jpier.org/PIERC/pier.php?paper=16072702

References


    1. Wu, J. N., Z. Q. Zhao, Z. Q. Nie, and Q. H. Liu, "A printed UWB vivaldi antenna using stepped connection structure between slotline and tapered patches," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 698-701, 2014.

    2. Ma, K., Z. Q. Zhao, J. N. Wu, M. S. Ellis, and Z. P. Nie, "A printed vivaldi antenna with improved radiation patterns by using two pairs of eye-shaped slots for UWB applications," Progress In Electromagnetic Research, Vol. 148, 63-67, 2014.
    doi:10.2528/PIER14043003

    3. Nassar, I. T. and T. M. Weller, "A novel method for improving antipodal vivaldi antenna performance," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3321-3324, 2015.
    doi:10.1109/TAP.2015.2429749

    4. Natarajan, R., J. V. George, M. Kanagasabai, and A. K. Shrivastav, "A compact antipodal vivaldi antenna for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1557-1560, 2015.
    doi:10.1109/LAWP.2015.2412255

    5. Amini, A., H. Oraizi, and M. A. C. Zadeh, "Miniaturized UWB log-periodic square fractal antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1322-1325, 2014.

    6. Liang, J. X., C. C. Chiau, X. D Chen, and C. G. Parini, "Study of a printed circular disc monopole antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3500-3504, 2005.
    doi:10.1109/TAP.2005.858598

    7. Gong, B., J. L. Li, Q. R. Zheng, Y. Z. Yin, and X. S. Ren, "A compact inductively loaded monopole antenna for future uwb applications," Progress In Electromagnetic Research, Vol. 139, 265-275, 2013.
    doi:10.2528/PIER13031701

    8. Dikmen, C. M., S. Cimen, and G. Cakr, "Planar octagonal-shaped UWB antenna with reduced radar cross section," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 2946-2953, Jun. 2014.
    doi:10.1109/TAP.2014.2313855

    9. Steven, R. B., "A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-euclidean wire antennas," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 9-28, 2003.
    doi:10.1109/MAP.2003.1232160

    10. Comisso, M., "On the use of dimension and lacunarity for comparing the resonant behavior of convoluted wire antennas," Progress In Electromagnetic Research, Vol. 96, 361-376, 2009.
    doi:10.2528/PIER09082505

    11. Sengupta, K. and K. J. Vinoy, "A new measure of lacunarity for generalized fractals and its impact in the electromagnetic behavior of Koch dipole antennas," Fractals, Vol. 14, No. 4, 271-282, 2006.
    doi:10.1142/S0218348X06003313

    12. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, 2003.
    doi:10.1109/MAP.2003.1189650

    13. Mahatthanajatuphat, C., P. Akkaraekthalin, S. Saleekaw, and M. Krairiksh, "A bidirectional multiband antenna with modified fractal slot fed by CPW," Progress In Electromagnetic Research, Vol. 95, 69-72, 2009.

    14. Dhar, S., K. Patra, R. Ghatak, B. Gupta, and D. R. Poddar, "A dielectric resonator-loaded minkowski fractal-shaped slot loop heptaband antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1521-1529, Apr. 2015.
    doi:10.1109/TAP.2015.2393869

    15. Choukiker, Y. K. and S. K. Behera, "Modified Sierpinski square fractal antenna covering ultrawide band application with band notch characteristics," IET Microwaves, Antennas & Propagation, Vol. 8, No. 7, 506-512, 2014.
    doi:10.1049/iet-map.2013.0235

    16. Zhao, X. Y., H. G. Zang, and G. L. Zhang, "A novel ultra-wideband fractal tree-shape antenna," Journal of Electronic & Information Technology, Vol. 37, No. 4, 1008-1012, 2015.

    17. Li, T., H. Q. Zhai, and G. H. Li, "Compact UWB band-notched antenna design using interdigital capacitance loading loop resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 724-727, 2012.

    18. Ojaroudi, N. and M. Ojaroudi, "Novel design of dual band-notched monopole antenna with bandwidth enhancement for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 698-701, 2013.
    doi:10.1109/LAWP.2013.2264713

    19. Li, Y. S., W. X. Li, and Q. B Ye, "A CPW-fed circular wide-slot UWB antenna with dual-notch bands by combining slot and parasitic element techniques," Microwave and Optical Technology Letters, Vol. 56, No. 5, 1240-1244, 2014.
    doi:10.1002/mop.28296

    20. Weng, Y. F., S. W. Cheung, and T. I. Yuk, "Design of multiple band-notch using meander lines for compact ultra-wide band antennas," IET Microwaves, Antennas & Propagation, Vol. 6, No. 8, 908-914, 2012.
    doi:10.1049/iet-map.2011.0572

    21. Liu, X. l., Y. Z. Yin, P. G. Liu, J. H. Wang, and B. Xu, "A CPW-fed dual band-notched UWB antenna with a pair of bended dual-L-shape parasitic branches," Progress In Electromagnetic Research, Vol. 136, 623-634, 2013.
    doi:10.2528/PIER12122507

    22. Gheethan, A. A. and D. E. Anagnostou, "Dual band-reject UWB antenna with sharp rejection of narrow and closely-spaced bands," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2071-2076, Apr. 2015.
    doi:10.1109/TAP.2012.2186221

    23. Wu, Z. H., F. Wei, X. W. Shi, and W. T. Li, "A compact quad band-notched UWB monopole antenna loaded one lateral l-shaped slot," Progress In Electromagnetic Research, Vol. 139, 303-315, 2013.
    doi:10.2528/PIER13022714

    24. Gao, P., L. Xiong, J. B. Dai, S. He, and Y. Zheng, "Compact printed wide-slot UWB antenna with 3.5/5.5-GHz dual band-notched characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 983-986, 2013.
    doi:10.1109/LAWP.2013.2277591

    25. Ma, T. G. and J. W. Tsai, "Band-rejected ultra wideband planar monopole antenna with high frequency selectivity and controllable bandwidth using inductively coupled resonator pairs," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2747-2752, Aug. 2010.
    doi:10.1109/TAP.2010.2050444

    26. Zhang, Y., W. Hong, and C. Yu, "Design and implementation of planar ultra-wideband antennas with multiple notched bands based on stepped impedance resonators," IET Microwaves, Antennas & Propagation, Vol. 3, No. 7, 1051-1059, 2012.
    doi:10.1049/iet-map.2008.0233

    27. Dong, Y. D., W. Hong, Z. Q. Kuai, C. Yu, Y. Zhang, J. Y. Zhou, and J. X. Chen, "Development of ultrawideband antenna with multiple band-notched characteristics using half mode substrate integrated waveguide cavity technology," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 9, 2894-2901, Sep. 2008.
    doi:10.1109/TAP.2008.928792

    28. Siddiqui, J. Y., C. Saha, and Y. M. M. Antar, "Compact dual-srr-loaded UWB monopole antenna with dual frequency and wideband notch characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 100-103, 2015.
    doi:10.1109/LAWP.2014.2356135

    29. Dhar, S., R. Ghatak, B. Gupta, and D. R. Poddar, "A wideband minkowski fractal dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 2895-2903, Jun. 2013.
    doi:10.1109/TAP.2013.2251596