Vol. 68

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-10-05

High-Gain Planar Lens Antennas Based on Transformation Optics and Substrate-Integrated Waveguide (SIW) Technology

By Iman Aghanejad, Habibollah Abiri, and Alireza Yahaghi
Progress In Electromagnetics Research C, Vol. 68, 45-55, 2016
doi:10.2528/PIERC16070807

Abstract

Transformation of space coordinates is a tool to synthesize material properties in view of obtaining a controlled electromagnetic field pattern. Also, substrate-integrated waveguide (SIW) technology can well be exploited to develop microwave and millimeter-wave components. In this paper, by combining these features, high-gain SIW planar lens antennas are proposed. Using the embedded transformation-optics lenses, both narrow beamwidth of 12˚ and low sidelobe levels of -23 dB are achieved for the H-plane radiation patterns by a single antenna. The designed transformation-optics lenses can be realized by drilling spatially varying cylindrical holes in an ordinary dielectric substrate. The E-plane radiation patterns can also be improved through the dielectric slabs in front of the antenna aperture integrated in the same substrate. Therefore, using SIW technology, the lens antennas can be fabricated on a single substrate. An H-plane sectoral horn and a Maxwell-fisheye-based lens antenna are designed using the proposed method. Simulation results confirm the validity of the proposed idea and the advantages of these lens antennas.

Citation


Iman Aghanejad, Habibollah Abiri, and Alireza Yahaghi, "High-Gain Planar Lens Antennas Based on Transformation Optics and Substrate-Integrated Waveguide (SIW) Technology," Progress In Electromagnetics Research C, Vol. 68, 45-55, 2016.
doi:10.2528/PIERC16070807
http://jpier.org/PIERC/pier.php?paper=16070807

References


    1. Pendry, J. B., D. Schuring, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
    doi:10.1126/science.1125907

    2. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006.
    doi:10.1126/science.1126493

    3. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
    doi:10.1126/science.1133628

    4. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Phot., Vol. 1, 224-227, 2007.
    doi:10.1038/nphoton.2007.28

    5. Wang, W., L. Lin, X. Yang, J. Cui, C. Du, and X. Luo, "Design of oblate cylindrical perfect lens using coordinate transformation," Opt. Express, Vol. 16, 8094-8105, 2008.
    doi:10.1364/OE.16.008094

    6. Tsang, M. and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B, Vol. 77, 035122, 2008.
    doi:10.1103/PhysRevB.77.035122

    7. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations," Photonics Nanostruct. Fundam. Appl., Vol. 6, No. 1, 87-95, 2008.
    doi:10.1016/j.photonics.2007.07.013

    8. Kong, F., B.-I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, "Planar focusing antenna design by using coordinate transformation technology," Appl. Phys. Lett., Vol. 91, 253509, 2007.
    doi:10.1063/1.2826283

    9. Jiang, W. X., T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, "Layered high-gain lens antennas via discrete optical transformation," Appl. Phys. Lett., Vol. 83, 221906, 2008.
    doi:10.1063/1.3040307

    10. Luo, Y., J. Zhang, H. Chen, J. Huangfu, and L. Ran, "High-directivity antenna with small antenna aperture," Appl. Phys. Lett., Vol. 95, 193506, 2009.
    doi:10.1063/1.3264085

    11. Tichit, P.-H., S. N. Burokur, and A. de Lustrac, "Design and experimental demonstration of a high-directive emission with transformation optics," Phys. Rev. B, Vol. 83, No. 15, 155108, 2011.
    doi:10.1103/PhysRevB.83.155108

    12. Tichit, P.-H., S. N. Burokur, and A. de Lustrac, "Transformation media producing quasi-perfect isotropic emission," Optics Express, Vol. 19, No. 21, 20551-20556, 2011.
    doi:10.1364/OE.19.020551

    13. Leonhardt, U. and T. G. Philbin, "Transformation optics and the geometry of light," Prog. Opt., Vol. 53, 69-152, 2009.
    doi:10.1016/S0079-6638(08)00202-3

    14. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, No. 20, 203901, 2008.
    doi:10.1103/PhysRevLett.101.203901

    15. Ma, Y. G., N. Wang, and C. K. Ong, "Application of inverse, strict conformal transformation to design waveguide devices," J. Opt. Soc. Amer. A, Vol. 27, No. 5, 968-972, 2010.
    doi:10.1364/JOSAA.27.000968

    16. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, No. 5912, 366-369, 2009.
    doi:10.1126/science.1166949

    17. Smith, D. R., Y. Urzhumov, N. B. Kundtz, and N. I. Landy, "Enhancing imaging systems using transformation optics," Optics Express, Vol. 18, No. 20, 21238-21251, 2010.
    doi:10.1364/OE.18.021238

    18. Kundtz, N. and D. R. Smith, "Extreme-angle broadband metamaterial lens," Nat. Mater., Vol. 9, No. 12, 129-132, 2010.
    doi:10.1038/nmat2610

    19. Mei, Z. L., J. Bai, and T. J. Cui, "Experimental verification of a broadband planar focusing antenna based on transformation optics," New J. Phys., Vol. 13, No. 6, 063028, 2011.
    doi:10.1088/1367-2630/13/6/063028

    20. Garcia-Meca, C., A. Martnez, and U. Leonhardt, "Engineering antenna radiation patterns via quasi-conformal mappings," Optics Express, Vol. 19, No. 24, 23743-23750, 2011.
    doi:10.1364/OE.19.023743

    21. Aghanejad, I., H. Abiri, and A. Yahaghi, "Design of high-gain lens antenna by gradient-index metamaterials using transformation optics," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4074-4081, 2012.
    doi:10.1109/TAP.2012.2207051

    22. Aghanejad, I., H. Abiri, A. Yahaghi, and R. Ramezani, "A high-gain lens antenna based on transformation optics," Loughborough Antennas and Propag. Conf., 1-4, Loughborough, UK, Nov. 2012.

    23. Bozzi, M., A. Georgiadis, and K. E. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microw. Antennas Propag., Vol. 5, No. 8, 909-920, 2011.
    doi:10.1049/iet-map.2010.0463

    24. Yan, L., W. Hong, G. Hua, J. Chen, K. Wu, and T. J. Cui, "Simulation and experiment on SIW slot array antennas," IEEE Microw. Wirel. Compon. Lett., Vol. 14, No. 9, 446-448, 2004.
    doi:10.1109/LMWC.2004.832081

    25. Xu, F., K. Wu, and X. Zhang, "Periodic leaky-wave antenna for millimeter wave applications based on substrate integrated waveguide," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 340-347, 2010.
    doi:10.1109/TAP.2009.2026593

    26. Cheng, Y. J., W. Hong, and K. Wu, "Design of a monopulse antenna using a dual V-type linearly tapered slot antenna (DVLTSA)," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 903-2909, 2008.

    27. Awida, M. H. and A. E. Fathy, "Substrate-integrated waveguide Ku-band cavity-backed 2 × 2 microstrip patch array antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 1054-1056, 2009.
    doi:10.1109/LAWP.2009.2031416

    28. Wang, H., D.-G. Fang, B. Zhang, and W.-Q. Che, "Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 640-647, 2010.
    doi:10.1109/TAP.2009.2039298

    29. Henrici, P., Applied and Computational Complex Analysis, Vol. 3, Wiley, 1986.

    30., , [Online], Available: http://www.comsol.com.

    31. Vasic, B., G. Isic, R. Gajic, and K. Hingerl, "Controlling electromagnetic fields with graded photonic crystals in metamaterial regime," Optics Express, Vol. 18, No. 19, 20321-20333, 2010.
    doi:10.1364/OE.18.020321

    32. Halevi, P., A. A. Krokhin, and J. Arriaga, "Photonic crystal optics and homogenization of 2D periodic composites," Phys. Rev. Lett., Vol. 82, No. 4, 719-722, 1999.
    doi:10.1103/PhysRevLett.82.719

    33. Che, W., K. Deng, D.Wang, and Y. L. Chow, "Analytical equivalence between substrate-integrated waveguide and rectangular waveguide," IET Microw. Antennas Propag., Vol. 2, No. 1, 35-41, 2008.
    doi:10.1049/iet-map:20060283

    34., , [Online], Available: http://www.ansys.com/.

    35. Marchand, E. W., Gradient Index Optics, Academic Press, New York, 1978.