Vol. 67

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-09-19

ISAR Imaging Based on L1 L0 Norms Homotopy 2D Block Sparse Signal Recovery Algorithm

By Changzheng Ma, Boon Ng, and Junjie Feng
Progress In Electromagnetics Research C, Vol. 67, 135-141, 2016
doi:10.2528/PIERC16060701

Abstract

Many traditional sparse signal recovery based ISAR imaging methods did not utilize the block scatterers information of targets. Some block Bayesian learning based ISAR imaging algorithms are computational expensive. In this paper, a 2D block l1l0 norms homotopy sparse signal recovery algorithm (the BL1L0 algorithm) is proposed and utilized to form the ISAR image. Compared with Bayesian-based algorithms, this algorithm can obtain ISAR images with similar image quality, but the computation speed is faster. Real data experiments verify the merits of our algorithm.

Citation


Changzheng Ma, Boon Ng, and Junjie Feng, "ISAR Imaging Based on L1 L0 Norms Homotopy 2D Block Sparse Signal Recovery Algorithm," Progress In Electromagnetics Research C, Vol. 67, 135-141, 2016.
doi:10.2528/PIERC16060701
http://jpier.org/PIERC/pier.php?paper=16060701

References


    1. Mensa, D. L., High Resolution Radar Cross-Section Imaging, Artech House, 1991.

    2. Wehner, D. R., High Resolution Radar, Artech House, 1994.

    3. Zhang, L., M. Xing, C. W. Qiu, J. Li, and Z. Bao, "Achieving higher resolution ISAR imaging with limited pulses via compressed sampling," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 3, 567-571, 2009.
    doi:10.1109/LGRS.2009.2021584

    4. Jiang, C., B. Zhang, J. Fang, Z. Zhe, W. Hong, Y. Wu, and Z. Xu, "Efficient lq regularisation algorithm with range-azimuth decoupled for SAR imaging," Electronics Letters, Vol. 50, No. 3, 204-205, 2014.
    doi:10.1049/el.2013.1989

    5. Cetin, M., I. Stojanovic, N. Onhon, K. R. Varshney, S. Samadi, W. C. Karl, and A. S. Willsky, "Sparsity-driven synthetic aperture radar imaging," IEEE Signal Processing Magazine, Vol. 31, No. 4, 27-40, 2014.
    doi:10.1109/MSP.2014.2312834

    6. Zhang, X., T. Bai, H. Meng, and J. Chen, "Compressive sensing-based ISAR imaging via the combination of the sparsity and nonlocal total variation," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 5, 990-994, 2014.
    doi:10.1109/LGRS.2013.2284288

    7. Lv, J., L. Huang, Y. Shi, and X. Fu, "Inverse synthetic aperture radar imaging via modified smoothed l0 norm," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1235-1238, 2014.

    8. Wang, L., L. Zhao, G. Bi, C. Wan, and L. Yang, "Enhanced ISAR imaging by exploiting the continuity of the target scene," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 9, 5736-5750, 2014.
    doi:10.1109/TGRS.2013.2292074

    9. Wang, L., L. Zhao, G. Bi, and C. Wan, "Sparse representation-based ISAR imaging using Markov random fields," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 8, 3941-3953, 2015.
    doi:10.1109/JSTARS.2014.2359250

    10. Duan, H., L. Zhang, J. Fang, L. Huang, and H. Li, "Pattern-coupled sparse Bayesian learning for inverse synthetic aperture radar imaging," IEEE Signal Processing Letters, Vol. 22, No. 11, 1995-1999, 2015.
    doi:10.1109/LSP.2015.2452412

    11. Mohimani, H., M. Babaie-Zadeh, and C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed l0 norm," IEEE Trans. Signal Process., Vol. 57, No. 1, 289-301, 2009.
    doi:10.1109/TSP.2008.2007606

    12. Ma, C., T. Yeo, Y. Zhao, and J. Feng, "MIMO radar 3D imaging based on combined amplitude and total variation cost function with sequential order one negative exponential form," IEEE Trans. Image Process., Vol. 23, No. 5, 2168-2183, 2014.
    doi:10.1109/TIP.2014.2311735

    13. Ma, C., T. S. Yeo, Z. Liu, Q. Zhang, and Q. Guo, "Target imaging based on 1 0 norms homotopy sparse signal recovery and distributed MIMO antennas," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 4, 3399-3414, 2015.
    doi:10.1109/TAES.2015.140939