Vol. 66

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-08-17

Power-Combined Multipliers at 60 GHz Based on Fundamental Frequency Vector Modulation

By Pengfei Sun, Liang Wu, Jinyi Ding, and Xiao-Wei Sun
Progress In Electromagnetics Research C, Vol. 66, 191-199, 2016
doi:10.2528/PIERC16052502

Abstract

High output power multiplier is necessary for local oscillator (LO) source of millimeter-wave and terahertz applications. However, single multiplier chip power-handling capability is limited by understandably low efficiency level and other technical constraints. Conventional in-phase power-combined structures are sensitive to the fabrication and assembly errors. In order to circumvent these limits, we propose a power-combined multiplier architecture at 60 GHz based on fundamental frequency vector modulation at 30 GHz. The fundamental vector modulator adjustment can compensate the phase deviation at the two doubler output ports despite fabrication and assembly tolerances. We can increase the output power by approximately 3 dB compared with single multiplier without sacrificing the bandwidth.

Citation


Pengfei Sun, Liang Wu, Jinyi Ding, and Xiao-Wei Sun, "Power-Combined Multipliers at 60 GHz Based on Fundamental Frequency Vector Modulation," Progress In Electromagnetics Research C, Vol. 66, 191-199, 2016.
doi:10.2528/PIERC16052502
http://jpier.org/PIERC/pier.php?paper=16052502

References


    1. Schellenberg, J., E. Watkins, M. Micovic, B. Kim, and K. Han, "W-band, 5W solid-state power amplifier/combiner," IEEE MTT-S Int. Dig., 240-243, May 2010.

    2. Lee, C., et al., "A wafer-level diamond bonding process to improve power handling capability of submillimeter-wave Schottky diode frequency multipliers," IEEE MTT-S Int. Dig., 957-960, Jun. 2009.

    3. Nosaeva, K., et al., "Multifinger indium phosphide double-heterostructure transistor circuit technology with integrated diamond heat sink layer," IEEE Trans. Electron Devices, Vol. 63, No. 5, 1846-1852, May 2016.
    doi:10.1109/TED.2016.2533669

    4. Schwantuschke, D., P. Brckner, R. Quay, M. Mikulla, and O. Ambacher, "High-gain millimeter-wave AlGaN/GaN transistors," IEEE Trans. Electron Devices, Vol. 60, No. 10, 3112-3118, Oct. 2013.
    doi:10.1109/TED.2013.2272180

    5. Teppati, V., et al., "A W-band on-wafer active load-pull system based on down-conversion techniques," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 1, 148-153, Jan. 2014.
    doi:10.1109/TMTT.2013.2292042

    6. Belaid, M. and K. Wu, "Frequency multiplier using waveguide-based spatial power-combining architecture," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1124-1129, Apr. 2005.
    doi:10.1109/TMTT.2005.845720

    7. Schumann, B., M. Hoft, and R. Judaschke, "A multi-element 150/300 GHz spatial power dividing/combining frequency doubler," IEEE MTT-S Int. Dig., 1539-1542, 2002.

    8. Magath, T., M. Hoft, and R. Judaschke, "A two-dimensional quasi-optical power combining oscillator array with external injection locking," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 2, 567-572, Feb. 2004.
    doi:10.1109/TMTT.2003.821932

    9. Kirby, P. L., Y. Li, Q. Xiao, J. L. Hesler, and J. Papapolymerou, "Power combining multiplier using HBV diodes at 260 GHz," 2008 Asia-Pacific Microw. Conf., 1-4, Dec. 2008.
    doi:10.1109/APMC.2008.4957898

    10. Maestrini, A., et al., "In-phase power combining of submillimeter-wave multipliers," 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, 1-2, 2008.

    11. Maestrini, A., et al., "In-phase power-combined frequency triplers at 300 GHz," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 3, 218-220, Mar. 2008.
    doi:10.1109/LMWC.2008.916820

    12. Siles, J. V., et al., "A single-waveguide in-phase power-combined frequency doubler at 190GHz," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 6, 332-334, Jun. 2011.
    doi:10.1109/LMWC.2011.2134080

    13. Siles, J. V., et al., "A dual-output 550 GHz frequency tripler featuring ultra-compact silicon micromachining packaging and enhanced power-handling capabilities," 2015 Eur. Microw. Conf., 845-848, 2015.
    doi:10.1109/EuMC.2015.7345896

    14. Chen, Z. and J. Xu, "Design and characterization of aW-band power-combined frequency tripler for high-power and broadband operation," Progress In Electromagnetics Research, Vol. 134, 133-150, 2013.
    doi:10.2528/PIER12092009

    15. Dong, J., Y. Liu, Z. Yang, H. Peng, and T. Yang, "Broadband millimeter-wave power combiner using compact SIW to waveguide transition," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 9, 567-569, Sept. 2015.
    doi:10.1109/LMWC.2015.2451366

    16. Yin, K., K. Zhang, and J. Xu, "Characterization and design of millimeter-wave full-band waveguidebased spatial power divider/combiner," Progress In Electromagnetics Research C, Vol. 50, 65-74, 2014.
    doi:10.2528/PIERC14031604

    17. Siles, J. V., L. Choonsup, R. Lin, G. Chattopadhyay, T. Reck., C. Jung-Kubiak, I. Mehdi, and K. B. Cooper, "A high-power 105–120 GHz broadband on-chip power-combined frequency tripler," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 3, 157-159, Mar. 2015.
    doi:10.1109/LMWC.2015.2390539

    18. Hou, Y., L. Li, R. Qian, and X. Sun, "An efficient technique for designing high-performance millimeter-wave vector modulators with low temperature drift," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 3100-3107, Dec. 2008.
    doi:10.1109/TMTT.2008.2006808

    19. Han, K., M. Yang, Y. Sun, M. Chen, and X. Sun, "The integration of millimeter-wave active phased array antenna based on vector modulation technology," IEEE Electr. Design Adv. Package & Syst. Symp., 1-4, Dec. 2011.

    20. Ding, J., Q. Wang, Y. Zhang, and C. Wang, "A novel five-port waveguide power divider," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 4, 224-226, Apr. 2014.
    doi:10.1109/LMWC.2013.2295227