Vol. 66

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-08-02

Wideband Balanced Antipodal Vivaldi Antenna with Enhanced Radiation Parameters

By Li Li, Xinlin Xia, Yu Liu, and Tao Yang
Progress In Electromagnetics Research C, Vol. 66, 163-171, 2016
doi:10.2528/PIERC16051704

Abstract

A novel balanced antipodal Vivaldi antenna (BAVA) with high gain and good directivity is proposed in this paper. The outer edges of the flare are modified by a binomial curve to broaden the impedance bandwidth. A metal director is adopted to improve the antenna gain and directivity. The measured results show that the proposed BAVA achieves a bandwidth from 2 to more than 40 GHz with peak gain >0 dBi and >10 dBi over the 8-40 GHz range. The squinting beam of E-plane is less than 5° from 4 to 40 GHz and less than 3° from 22 to 40 GHz.

Citation


Li Li, Xinlin Xia, Yu Liu, and Tao Yang, "Wideband Balanced Antipodal Vivaldi Antenna with Enhanced Radiation Parameters," Progress In Electromagnetics Research C, Vol. 66, 163-171, 2016.
doi:10.2528/PIERC16051704
http://jpier.org/PIERC/pier.php?paper=16051704

References


    1. Federal Communications Commission, "Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,", First Report and Order, FCC 02, 48, 2002.
    doi:10.1163/156939309789108561

    2. Wang, J. J., Y. Z. Yin, and X. W. Dai, "A novel fractal triangular monopole antenna with notched and truncated ground for UWB application," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1313-1321, 2009.
    doi:10.1587/elex.7.228

    3. Moghadasi, M. N., K. Mohsen, R. S. Sheykhan, and B. S. Virdee, "Compact printed antenna with novel radiating element for UWB applications," IEICE Electron. Expr., Vol. 7, No. 4, 228-233, Feb. 2010.
    doi:10.1109/TAP.2007.905942

    4. Bruni, S., A. Neto, and F. Marliani, "The ultrawideband leaky lens antenna," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2642-2653, Oct. 2007.

    5. Gibson, P. J., "The Vivaldi aerial," Proc. 9th Eur. Microw. Conf., Brighton, U.K., Jun. 1979.
    doi:10.1049/ip-h-2.1988.0020

    6. Gazit, E., "Improved design of the Vivaldi antenna," IEE Proc. Microw. Antennas Propag., Vol. 135, 89-92, 1988.
    doi:10.1049/el:19931336

    7. Langley, J. D. S., P. S. Hall, and P. Newham, "Novel ultrawide-bandwith Vivaldi antenna with low crosspolarisation," Electron. Lett., Vol. 29, No. 23, 2004-2005, Nov. 1993.
    doi:10.1109/TAP.2010.2048844

    8. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2318-2326, Jul. 2010.

    9. Fisher, J., "Design and performance analysis of a 1–40 GHz ultra-wideband antipodal Vivaldi antenna," German Radar Symposium GRS, 2000.
    doi:10.1109/LAWP.2015.2457919

    10. Moosazadeh, M. and S. Kharkovsky, "A compact high-gain and front-to-back ratio ellipticallytapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens," IEEE Antennas Wireless Propag. Lett., Vol. 15, 552-555, 2016.
    doi:10.1049/el.2010.7579

    11. Kota, K. and L. Hall Shafai, "Gain and radiation pattern enhancement of balanced antipodal Vivaldi antenna," Electron. Lett., Vol. 47, No. 5, 303-304, 2011.
    doi:10.1002/mmce.20899

    12. Pandey, G. K. and M. K. Meshram, "A printed high gain UWB Vivaldi antenna design using tapered corrugation and grating elements," Int. J. RF Microw. Comput. Aided Eng., Vol. 25, No. 7, 610-618, Sep. 2015.
    doi:10.1002/mop.29158

    13. Moosazadeh, M. and S. Kharkovsky, "Development of the antipodal Vivaldi antenna for detection of cracks inside concrete members," Microwave Opt. Technol. Lett., Vol. 57, No. 7, 1573-1578, Jul. 2015.
    doi:10.1109/LAWP.2015.2412255

    14. Natarajan, R., J. V. George, M. Kanagasabai, and A. K. Shrivastav, "A compact antipodal Vivaldi antenna for UWB applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1557-1560, 2015.
    doi:10.1109/LAWP.2013.2253592

    15. Teni, G., N. Zhang, J. H. Qiu, and P. Y. Zhang, "Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation," IEEE Antennas Wireless Propag. Lett., Vol. 12, 417-420, 2013.
    doi:10.2528/PIER09020503

    16. Lin, S., S. Yang, A. E. Fathy, and A. Elsherbini, "Development of a novel UWB Vivaldi antenna array using SIW technology," Progress In Electromagnetics Research, Vol. 90, 369-384, 2009.
    doi:10.1080/09205071.2013.744124

    17. Yim, T. L., S. K. A. Rahim, and R. Dewan, "Reconfigurable wideband and narrowband tapered slot Vivaldi antenna with ring slot pairs," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 3, 276-287, Feb. 2013.
    doi:10.1109/TAP.2015.2429749

    18. Nassar, I. T. and T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Trans. Antennas Propag., Vol. 63, 3321-3324, 2015.
    doi:10.1049/iet-map.2014.0207

    19. Molaei, A., M. Kaboli, S. A. Mirtaheri, and M. S. Abrishamian, "Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications," IET Microw. Antennas Propag., Vol. 8, No. 14, 1137-1142, Nov. 2014.