Vol. 65

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-06-25

Observations in Respect of Real Time Temporal Cloaking/Uncloaking at Microwave Frequencies

By Hong-Cheng Zhou, Vincent Fusco, Bing-Zhong Wang, Lei Zhong, and Shuai Ding
Progress In Electromagnetics Research C, Vol. 65, 103-110, 2016
doi:10.2528/PIERC16050306

Abstract

Based on space-time duality and through the use of temporal dispersive delay lines, this paper presents a demonstration of temporal cloaking/uncloaking at microwave frequencies. Numerical simulations of pulse generation, continuous wave signal recovery and data recovery are discussed in relation to the proposed system architecture. This paper also suggests a practical means for implementation of real time dual temporal cloaking/uncloaking. Compared to traditional signal processing systems, since the recovered data emerges with a reversed form in time domain before its final decoding, an extra operation named time-reversal is needed to obtain the correct data, which could help protect the significant signals better with the proposed temporal cloaking/uncloaking system. The proposed method and achieved results indicate potential application in secure communications and data multiplexing subject to channel bandwidth requirements.

Citation


Hong-Cheng Zhou, Vincent Fusco, Bing-Zhong Wang, Lei Zhong, and Shuai Ding, "Observations in Respect of Real Time Temporal Cloaking/Uncloaking at Microwave Frequencies," Progress In Electromagnetics Research C, Vol. 65, 103-110, 2016.
doi:10.2528/PIERC16050306
http://jpier.org/PIERC/pier.php?paper=16050306

References


    1. Mccall, M. W., A. Favaro, P. Kinsler, and A. Boardman, "A spacetime cloak, or a history editor," Journal of Optics, Vol. 13, No. 13, 24003-9, 2011.

    2. Fridman, M., A. Farsi, Y. Okawachi, and L. A. Gaeta, "Demonstration of temporal cloaking," Nature, Vol. 481, 62-65, 2012.
    doi:10.1038/nature10695

    3. Kolner, B., "Space-time duality and the theory of temporal imaging," IEEE Journal of Quantum Electronics, Vol. 30, 1951-1963, 1994.
    doi:10.1109/3.301659

    4. Azana, J. and M. A. Muriel, "Temporal self-imaging effects: theory and application for multiplying pulse repetition rates," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 7, 728-744, 2001.
    doi:10.1109/2944.974245

    5. Berger, N. K., B. Levit, A. Bekker, and B. Fischer, "Compression of periodic optical pulses using temporal fractional Talbot effect," IEEE Photonics Technology Letters, Vol. 16, 1855-1857, 2004.
    doi:10.1109/LPT.2004.831234

    6. Lukens, J. M., D. E. Leaird, and A. M. Weiner, "A temporal cloak at telecommunication data rate," Nature, Vol. 498, 205-208, 2013.
    doi:10.1038/nature12224

    7. Kolner, B. H. and M. Nazarathy, "Temporal imaging with a time lens," Opt. Lett., Vol. 14, 630-632, 1989.
    doi:10.1364/OL.14.000630

    8. Bennett, C. V. and B. Kolner, "Principles of parametric temporal imaging. I. System configurations," IEEE Journal of Quantum Electronics, Vol. 36, 430-437, 2000.
    doi:10.1109/3.831018

    9. Bennett, C. V. and B. Kolner, "Principles of parametric temporal imaging. I. System performance," IEEE Journal of Quantum Electronics, Vol. 36, 649-655, 2000.
    doi:10.1109/3.845718

    10. Salem, R., M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Optical time lens based on four-wave mixing on a silicon chip," Opt. Lett., Vol. 33, 1047-1049, 2008.
    doi:10.1364/OL.33.001047

    11. Foster, M. A., R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature, Vol. 456, 81-84, 2008.
    doi:10.1038/nature07430

    12. Foster, M. A., R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Ultrafast waveform compression using a time-domain telescope," Nature Photonics, Vol. 3, 581-585, 2009.
    doi:10.1038/nphoton.2009.169

    13. Lerosey, G., J. De Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, "Time reversal of electromagnetic waves," Physics Review Letters, Vol. 92, 193904(1-3), 2009.

    14. Lee, T. H., Planar Microwave Engineering: A Practical Guide to Theory, Measurement, and Circuits, Cambridge University Press, 2004.

    15. Abielmona, S., S. Gupta, and C. Caloz, "Compressive receiver using a CRLH-based dispersive delay line for analog signal processing," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 2617-2626, 2009.
    doi:10.1109/TMTT.2009.2031927

    16. Gupta, S., A. Parsa, E. Perret, R. V. Snyder, R. J. Wenzel, and C. Caloz, "Group-delay engineered noncommensurate transmission line all-pass network for analog signal processing," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 2392-2407, 2010.
    doi:10.1109/TMTT.2010.2058933

    17. Messer, H., H. Gilboa, and Y. Bar-Ness, "SAW time scaling techniques," IEEE Transactions on Sonics and Ultrasonics, Vol. 28, 271-277, 1981.
    doi:10.1109/T-SU.1981.31258

    18. Papoulis, A., Signal Analysis, McGraw-Hill Press, New York, 1978.

    19. Ardehali, M., "Narrow pulse generator,", US 7782111 B2 (patent), 2010.

    20. Laso, M. A., et al., "Real-time spectrum analysis in microstrip technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 705-717, 2003.
    doi:10.1109/TMTT.2003.808741