Vol. 64

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-06-13

Reconfigurable Radar Absorbing Structure Applied to the Antenna Radar Cross Section Reduction

By Fu-Wei Wang, Lixin Guo, and Shu-Xi Gong
Progress In Electromagnetics Research C, Vol. 64, 179-185, 2016
doi:10.2528/PIERC16042905

Abstract

An active reconfigurable Radar absorbing structure (RAS) with the pin diode was proposed to reduce the radar cross section (RCS) of antenna. The operating states of the RAS reflector can be switched by using the pin diode. For ON-state and OFF-state diodes, the reflection coefficients of the RAS reflector were less than -25 dB and more than -0.8 dB around 8.3 GHz, respectively. The RAS reflector with ON-state diodes can be used as a dipole antenna reflector and has the same radiation performance as a dipole with a metal reflector, while the RAS reflector with OFF-state diodes can be used as a radar absorber for RCS reduction. Meanwhile, chessboard-like geometry RAS reflector was proposed to achieve wideband RCS reduction. The RCS reduction band covers the working band and is extended to 5-18 GHz. The results show that the reconfigurable RAS reflector can contribute to the antenna RCS reduction at working frequency without loss of radiation performance of dipole antenna.

Citation


Fu-Wei Wang, Lixin Guo, and Shu-Xi Gong, "Reconfigurable Radar Absorbing Structure Applied to the Antenna Radar Cross Section Reduction," Progress In Electromagnetics Research C, Vol. 64, 179-185, 2016.
doi:10.2528/PIERC16042905
http://jpier.org/PIERC/pier.php?paper=16042905

References


    1. Pozar, D. M., "Radiation and scattering from a microstrip patch on a uniaxial substrate," IEEE Trans. Antennas and Propag., Vol. 2, 613-621, Aug. 1987.
    doi:10.1109/TAP.1987.1144161

    2. Gustafsson, M., "RCS reduction of integrated antenna arrays and radomes with resistive sheets," IEEE Trans. Antennas and Propag. Soc., Vol. 3, 3479-3482, 2006.

    3. Li, Y.-Q., H. Zhang, Y.-Q. Fu, and N.-C. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 473-476, 2008.
    doi:10.1109/LAWP.2008.2001548

    4. Cui, G., Y. Liu, and S. Gong, "A novel fractal patch antenna with low RCS," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2403-2411, 2007.
    doi:10.1163/156939307783134335

    5. Jiang, W., Y. Liu, S. X. Gong, and T. Hong, "Application of bionics in antenna radar cross section reduction," IEEE Antenna and Wireless Propagation Letters, Vol. 8, 1275-1278, 2009.
    doi:10.1109/LAWP.2009.2037168

    6. Wang, F., W. Jiang, T. Hong, Q. H. Xue, S. Gong, and Y. Zhang, "Radar cross section reduction of wideband antenna with a novel wideband radar absorbing materials," IET Microwaves, Antennas and Propag., Vol. 8, No. 6, 491-497, 2014.
    doi:10.1049/iet-map.2013.0356

    7. Shang, Y., S. Xiao, M.-C. Tang, Y.-Y. Bai, and B. Wang, "Radar cross-section reduction for a microstrip patch antenna using PIN diodes," IET Microwaves, Antennas and Propag., Vol. 6, No. 6, 670-679, 2012.
    doi:10.1049/iet-map.2011.0460

    8. Munk, B. A., Frequency Selective Surfaces, Theory and Design, Wiley, New York, NY, USA, 2000.
    doi:10.1002/0471723770

    9. Li, M., S. Q. Xiao, Y.-Y. Bai, and B.-Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antenna and Wireless Propagation Letters, Vol. 11, 748-751, 2012.

    10. Genovesi, S., F. Costa, and A. Monorchio, "Wideband radar cross section reduction of slot antennas arrays," IEEE Trans. Antennas and Propag., Vol. 62, 163-173, 2014.
    doi:10.1109/TAP.2013.2287888

    11. Edalati, A. and K. Sarabandi, "Wideband, wide angle, polarization independent rcs reduction using nonabsorptive miniaturized-element frequency selective surfaces," IEEE Trans. Antennas and Propag., Vol. 62, 747-754, 2014.
    doi:10.1109/TAP.2013.2291236

    12. Wang, F.-W., S.-X. Gong, S. Zhang, X. Mu, and T. Hong, "RCS reduction of array antennas with radar absorbing structures," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17–18, 2487-2496, 2011.
    doi:10.1163/156939311798806239