Vol. 65

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-06-21

DOA and Polarization Estimation Algorithm Based on the Virtual Multiple Baseline Theory

By Guibao Wang, Mingxing Fu, Feng Zhao, and Xiang Liu
Progress In Electromagnetics Research C, Vol. 65, 45-56, 2016
doi:10.2528/PIERC16041705

Abstract

An algorithm of solving phase ambiguity of multi-baseline direction finding system based on sparse uniform circular array is proposed in this paper. This sparse uniform circular array whose inter-element spacing is larger than half-wavelength distance suffers from cyclic phase ambiguities, which may cause estimation errors. In order to solve the above phase ambiguities, the corresponding virtual short baselines are acquired by transforming the array element phases that meet with the contraction relationship. The obtained short baselines are used to solve the phase ambiguities according to the virtual baseline and stagger baseline theory. Highly accurate estimates of direction of arrival are herein acquired. Furthermore, the direction of arrival and polarization parameter estimates are automatically matched with no additional processing. The array arrangement problem in high frequency scenario is solved. The estimation accuracy of angle of arrival is improved by means of the phase ambiguity resolution. Simulation results verify the effectiveness of this algorithm.

Citation


Guibao Wang, Mingxing Fu, Feng Zhao, and Xiang Liu, "DOA and Polarization Estimation Algorithm Based on the Virtual Multiple Baseline Theory," Progress In Electromagnetics Research C, Vol. 65, 45-56, 2016.
doi:10.2528/PIERC16041705
http://jpier.org/PIERC/pier.php?paper=16041705

References


    1. Yuan, X., K. T. Wong, Z. Xu, and K. Agrawal, "Various compositions to form a triad of collocated dipoles/loops, for direction finding and polarization estimation," IEEE Sens. J., Vol. 12, No. 6, 1763-1771, 2012.
    doi:10.1109/JSEN.2011.2179532

    2. Wang, G., "A joint parameter estimation method with conical conformal CLD pair array," Progress In Electromagnetics Research C, Vol. 57, 99-107, 2015.

    3. Li, Y. and J. Q. Zhang, "An enumerative nonlinear programming approach to direction finding with a general spatially spread electromagnetic vector sensor array," IEEE Trans. Signal Process., Vol. 93, 856-865, 2013.

    4. Yuan, X., K. T.Wong, and K. Agrawal, "Polarization estimation with a dipole-dipole pair, a dipoleloop pair, or a loop-loop pair of various orientations," IEEE Trans. Antenn. Propag., Vol. 60, No. 5, 2442-2452, 2012.
    doi:10.1109/TAP.2012.2189740

    5. Luo, F. and X. Yuan, "Enhanced ‘vector-cross-product’ direction-finding using a constrained sparse triangular-array," EURASIP J. Adv. Signal Process., Vol. 2012, No. 115, 1-11, 2012.

    6. Wang, L. M., Z. H. Chen, and G. B. Wang, "Direction finding and positioning algorithm with COLD-ULA based on quaternion theory," Journal of Communications, Vol. 9, No. 10, 778-784, 2014.
    doi:10.12720/jcm.9.10.778-784

    7. Nehorai, A. and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," 25th Asilomar Conf. Signals, Syst., Comput., 566-572, Pacific Grove, CA, 1991.

    8. Nehorai, A. and E. Paldi, "Vector sensor array processing for electromagnetic source localization," IEEE Trans. Signal Process., Vol. 42, No. 2, 376-398, 1994.
    doi:10.1109/78.275610

    9. Li, J., "Direction and polarization estimation using arrays with small loops and short dipoles," IEEE Trans. Antenn. Propag., Vol. 41, No. 3, 379-387, 1993.
    doi:10.1109/8.233120

    10. Li, J. and R. T. Compton, "Two-dimensional angle and polarization estimation using the ESPRIT algorithm," IEEE Trans. Antenn. Propag., Vol. 40, No. 5, 550-555, 1992.
    doi:10.1109/8.142630

    11. Wong, K. T. and M. D. Zoltowski, "Polarization diversity and extended aperture spatial diversity to mitigate fading-channel effects with a sparse array of electric dipoles or magnetic loops," IEEE Int. Veh. Technol. Conf., 1163-1167, 1997.

    12. Wong, K. T. and M. D. Zoltowski, "High accuracy 2D angle estimation with extended aperture vector sensor arrays," Proc. IEEE. Int. Conf. Acoust., Speech, Signal Processing, Vol. 5, 2789-2792, 1996.

    13. Wang, L. M., L. Yang, G. B. Wang, and Z. H. Chen, "Uni-vector-sensor dimensionality reduction MUSIC algorithm for DOA and polarization estimation," Math. Probl. Eng., Vol. 2014, 1-9, 2014.

    14. Wong, K. T. and M. D. Zoltowski, "Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation," IEEE Trans. Antenn. Propag., Vol. 45, No. 10, 1467-1474, 1997.
    doi:10.1109/8.633852

    15. He, J. and Z. Liu, "Extended aperture 2-D direction finding with a two-parallel-shape-array using propagator method," IEEE Antenn. Wirel. Pr., Vol. 8, 323-327, 2009.

    16. Wong, K. T. and X. Yuan, "Vector cross-product direction-finding’ with an electromagnetic vectorsensor of six orthogonally oriented but spatially non-collocating dipoles/loops," IEEE Trans. Signal Process., Vol. 59, No. 1, 160-171, 2011.
    doi:10.1109/TSP.2010.2084085

    17. Song, Y., X. Yuan, and K. T. Wong, "Corrections to ‘vector cross-product direction-finding’ with an electromagnetic vector-sensor of six orthogonally oriented but spatially non-collocating dipoles/loops," IEEE Trans. Signal Process., Vol. 62, No. 4, 1028-1030, 2014.
    doi:10.1109/TSP.2013.2290501

    18. Zoltowski, M. D. and K. T. Wong, "Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform rectangular array grid," IEEE Trans. Signal Process., Vol. 48, No. 8, 2205-2210, 2000.
    doi:10.1109/78.852001

    19. Wong, K. T. and M. D. Zoltowski, "Closed-form direction-finding with arbitrarily spaced electromagnetic vector-sensors at unknown locations," IEEE Trans. Antenn. Propag., Vol. 48, No. 5, 671-681, 2000.
    doi:10.1109/8.855485

    20. Wang, L. M., G. B. Wang, and Z. H. Chen, "Joint DOA-polarization estimation based on uniform concentric circular array," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 13, 1702-1714, 2013.
    doi:10.1080/09205071.2013.823122

    21. Liu, J., Z. Liu, and Q. Liu, "Direction and polarization estimation for coherent sources using vector sensors," Journal of Systems Engineering and Electronics, Vol. 24, No. 4, 600-605, 2013.
    doi:10.1109/JSEE.2013.00070

    22. Yuan, X., "Spatially spread dipole/loop quads/quints: For direction finding and polarization estimation," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1081-1084, 2013.
    doi:10.1109/LAWP.2013.2280584

    23. Zoltowski, M. D. and K. T. Wong, "ESPRIT-based 2D direction finding with a sparse array of electromagnetic vector-sensors," IEEE Trans. Signal Process., Vol. 48, No. 8, 2195-2204, 2000.
    doi:10.1109/78.852000

    24. Gavish, M. and A. J. Weiss, "Array geometry for ambiguity resolution in direction finding," IEEE Trans. Antenn. Propag., Vol. 44, No. 6, 889-895, 1996.
    doi:10.1109/8.509893

    25. Zhou, Y. Q. and F. K. Huang, "Solving ambiguity problem of digitized multi-baseline interferometer under noisy circumstance," Journal of China Institute of Communications, Vol. 34, No. 8, 16-21, 2005.

    26. Wang, L. M., J. P. Lin, G. B. Wang, and Z. H. Chen, "A direction finding technique using millimeter-wave interferometer," J. Infrared Millim. W., Vol. 34, No. 2, 140-144, 2015.

    27. Wu, Y. W., S. Rhodes, and E. H. Satorius, "Direction of arrival estimation via extended phase interferometry," IEEE Trans. Aero. Elec. Sys., Vol. 31, No. 1, 375-381, 1995.
    doi:10.1109/7.366333

    28. Wang, G. B., "Direction of arrival and polarization estimation with a polarized circular array," Journal of Beijing University of Posts and Telecommunications, Vol. 39, No. 2, 72-75, 2016.

    29. Lomine, J., C. Morlaas, C. Imbert, and H. Aubert, "Dual-band vector sensor for direction of arrival estimation of incoming electromagnetic waves," IEEE Trans. Antenn. Propag., Vol. 63, No. 8, 3662-3671, 2015.
    doi:10.1109/TAP.2015.2435039