Vol. 63

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-05-05

A Slim Composite Antenna with Polarization and Pattern Diversity for WLAN Router Applications

By Li Sun, Bao-Hua Sun, Guanxi Zhang, and Xiao-Le Zhang
Progress In Electromagnetics Research C, Vol. 63, 209-217, 2016
doi:10.2528/PIERC16031303

Abstract

A slim tri-port antenna with polarization diversity and pattern diversity characteristics is presented for 2.45 GHz WLAN router applications. By compositing a J-pole antenna and two perpendicularly crossed dipoles, the proposed antenna achieves available vertical and horizontal polarizations covering the whole horizontal plane. Besides, the two crossed dipoles generate two orthogonal radiation patterns, making it an attractive solution for pattern diversity applications. The three antennas are integrated by sharing the bottom structure of J-pole antenna and the top structure of dipoles, resulting in a slim and compact structure. The proposed antenna is made by copper, with overall volume of only 25.5×25.5×126.5 mm3. Measure results show that return losses of three ports are all better than 10 dB and isolations between each two ports are better than 20 dB from 2.39 GHz to 2.49 GHz. Besides, simple structure, slim size, and light weight make it easy to install vertically on the WLAN routers.

Citation


Li Sun, Bao-Hua Sun, Guanxi Zhang, and Xiao-Le Zhang, "A Slim Composite Antenna with Polarization and Pattern Diversity for WLAN Router Applications," Progress In Electromagnetics Research C, Vol. 63, 209-217, 2016.
doi:10.2528/PIERC16031303
http://jpier.org/PIERC/pier.php?paper=16031303

References


    1. Kim, C., et al., "A wideband planar surface wave antenna for the WLAN router," European Microwave Conf., EuMc 2009, 1527-1530, Rome, Italy, Oct. 2009.

    2. Hsiao, F.-R. and K.-L. Wong, "Omnidirectional planar folded dipole antenna," IEEE Trans. Antennas Propag., Vol. 52, 1898-1902, 2004.
    doi:10.1109/TAP.2004.831337

    3. Nakano, H., R. Satake, and J. Yamauchi, "Horizontally polarized, omnidirectional antenna with a single feed," Proc. IEEE Int. Conf. Wireless Information Technology and Systems (ICWITS), 1-4, 2010.

    4. Zhang, Q.-C., D.-A. Jiang, and W.Wu, "An integrated diversity antenna based on dual-feed cavitybacked slot," IEEE Antennas Wireless Propag. Lett., Vol. 13, 301-304, 2014.
    doi:10.1109/LAWP.2014.2305720

    5. Cox, D. C., "Antenna diversity performance in mitigating the effects of portable radio telephone orientation and multipath propagation," IEEE Trans. Commun., Vol. 31, No. 5, 620-628, May 1983.
    doi:10.1109/TCOM.1983.1095860

    6. Zou, L., D. Abbott, and C. Fumeaux, "Omnidirectional cylindrical dielectric resonator antenna with dual polarization," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 515-518, 2012.
    doi:10.1109/LAWP.2012.2199277

    7. McEwan, N. J., R. A. Abd-Alhameed, E. M. Ibrahim, P. S. Excell, and J. G. Gardiner, "A new design of horizontally polarized and dual-polarized uniplanar conical beam antennas for HIPERLAN," IEEE Trans. Antennas Propag., Vol. 51, No. 2, 229-237, Feb. 2003.
    doi:10.1109/TAP.2003.809058

    8. Sun, L., G.-X. Zhang, and B.-H. Sun, "Slim planar composite antenna with two orthogonal polarisations for WLAN router application," Electronics Letters, Vol. 51, No. 18, 1392-1394, Sept. 2015.
    doi:10.1049/el.2015.1601

    9. Li, Y., Z. J. Zhang, J. F. Zheng, and Z. H. Zheng, "Compact azimuthal omnidirectional dualpolarized antenna using highly isolated collocated slots," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4037-4045, Sept. 2012.
    doi:10.1109/TAP.2012.2207072

    10. Jungsuek, O. and K. Sarabandi, "Compact, low profile, common aperture polarization, pattern diversity antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 569-576, Feb. 2014.
    doi:10.1109/TAP.2013.2291901

    11. Sun, L., G.-X. Zhang and B.-H. Sun, W.-D. Tang, J.-P. Yuan, "A single patch antenna with broadside and conical radiation patterns for 3G/4G pattern diversity," IEEE Antennas Wireless Propag. Lett., 1, 2015.
    doi:10.1109/LAWP.2015.2427197

    12. Petit, L., L. Dussopt, and J. M. Laheurte, "MEMS-switched parasitic-antenna array for radiation pattern diversity," IEEE Trans. Antennas Propag., Vol. 54, No. 9, 2624-2631, Sep. 2006.
    doi:10.1109/TAP.2006.880751

    13. Rajo-Iglesias, E., O. Quevedo-Teruel, and M. P. Sanchez-Fernandez, "Compact multimode patch antennas for MIMO applications," IEEE Antennas Propag. Mag., Vol. 50, 197-205, Apr. 2008.

    14. Choudhury, S. H., M. I. Momtaz, and M. A. Matin, "Analytical deduction of the salient properties of a half wavelength J-pole antenna," IEEE 2010 International Conference on Computational Intelligence and Communication Networks (CICN), 32-35, 2010.
    doi:10.1109/CICN.2010.17

    15. Tang, T. G., Q.M. Tieng, and M.W. Gunn, "Equivalent circuit of a dipole antenna using frequencyindependent lumped elements," IEEE Trans. Antennas Propag., Vol. 41, No. 1, 100-103, 1993.
    doi:10.1109/8.210122

    16. Hamid, M. and R. Hamid, "Equivalent circuit of dipole antenna of arbitrary length," IEEE Trans. Antennas Propag., Vol. 45, No. 11, 1695-1696, 1997.
    doi:10.1109/8.650083