Vol. 63

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-04-28

A Low Complexity Direction of Arrival Estimation Algorithm by Reinvestigating the Sparse Structure of Uniform Linear Arrays

By Fenggang Sun, Peng Lan, Bin Gao, and Lizhen Chen
Progress In Electromagnetics Research C, Vol. 63, 119-129, 2016
doi:10.2528/PIERC16021505

Abstract

In this paper, we present a new computationally efficient method for direction-of-arrival (DOA) estimation in uniform linear arrays (ULAs). A sparse uniform linear array (SULA) structure is firstly extracted from the conventional ULA to exploit its advantage in high resolution. By performing the multiple signal classification (MUSIC), the noise subspace of the SULA is simultaneously orthogonal to the steering vectors corresponding to the true DOAs and several virtual DOAs, where all the true and virtual DOAs for each source are uniformly distributed in the sine domain. Then we divide the total angular field into several small sectors and search over an arbitrary sector. Finally, the true DOAs can be distinguished by the noise subspace of the original ULA. Since the proposed method involves a limited spectral search and a reduced-dimension noise subspace, hence it is quite computationally efficient. Simulation results are provided to verify the effectiveness of the proposed method in terms of computational complexity, estimation accuracy, and resolution performance.

Citation


Fenggang Sun, Peng Lan, Bin Gao, and Lizhen Chen, "A Low Complexity Direction of Arrival Estimation Algorithm by Reinvestigating the Sparse Structure of Uniform Linear Arrays," Progress In Electromagnetics Research C, Vol. 63, 119-129, 2016.
doi:10.2528/PIERC16021505
http://jpier.org/PIERC/pier.php?paper=16021505

References


    1. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Signal Processing Magazine, Vol. 13, No. 4, 67-94, 1996.
    doi:10.1109/79.526899

    2. Jiang, J., F. Duan, J. Chen, Y. Li, and X. Hua, "Mixed near-field and far-field sources localization using the uniform linear sensor array," IEEE Sensors Journal, Vol. 13, No. 8, 3136-3143, 2013.
    doi:10.1109/JSEN.2013.2257735

    3. Capon, J., "High-resolution frequency wavenumber spectrum analysis," Proceedings of the IEEE, Vol. 57, No. 8, 1408-1418, 1969.
    doi:10.1109/PROC.1969.7278

    4. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986.
    doi:10.1109/TAP.1986.1143830

    5. Rao, B. D. and K. V. S Hari, "Performance analysis of root-MUSIC," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 12, 1939-1949, 1989.
    doi:10.1109/29.45540

    6. Roy, R. and T. Kailath, "ESPRIT — Estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, 1989.
    doi:10.1109/29.32276

    7. Xu, G. and T. Kailath, "Fast subspace decomposition," IEEE Transactions on Signal Processing, Vol. 42, No. 3, 539-551, 1994.
    doi:10.1109/78.277846

    8. Yan, F., M. Jin, S. Liu, and X. Qiao, "Real-valued MUSIC for efficient direction estimation with arbitrary array geometries," IEEE Transactions on Signal Processing, Vol. 62, No. 6, 1548-1560, 2014.
    doi:10.1109/TSP.2014.2298384

    9. Barabell, A., "Improving the resolution performance of eigenstructure-based direction-finding algorithms," Proc. ICASSP’83, Vol. 8, 336-339, 1983.

    10. Yan, F., M. Jin, and X. Qiao, "Low-complexity DOA estimation based on compressed MUSIC and its performance analysis," IEEE Transactions on Signal Processing, Vol. 61, No. 8, 1915-1930, 2013.
    doi:10.1109/TSP.2013.2243442

    11. Morabito, A. F., T. Isernia, and L. Di Donato, "Optimal synthesis of phase-only reconfigurable linear sparse arrays having uniform-amplitude excitations," Progress In Electromagnetics Research, Vol. 124, 405-423, 2012.
    doi:10.2528/PIER11112210

    12. Wang, J., D. Vasisht, and D. Katabi, "RF-IDraw: Virtual touch screen in the air using RF signals," ACM SIGCOMM14, 235-246, 2014.
    doi:10.1145/2740070.2626330

    13. Vaidyanathan, P. and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Transactions on Signal Processing, Vol. 59, No. 2, 573-586, 2011.
    doi:10.1109/TSP.2010.2089682

    14. Zhou, C., Z. Shi, Y. Gu, and X. Shen, "DECOM: DOA estimation with combined MUSIC for coprime array," Proc. WCSP 2013, 1-5, 2013.

    15. Weng, Z. and P. Djuric, "A search-free DOA estimation algorithm for coprime arrays," Digital Signal Processing, Vol. 24, 27-33, 2014.
    doi:10.1016/j.dsp.2013.10.005

    16. Shen, Q., Y. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-ofarrival estimation," IEEE Transactions on Signal Processing, Vol. 63, No. 6, 1377-1390, 2015.
    doi:10.1109/TSP.2015.2393838

    17. Tan, Z., Y. C. Eldar, and A. Nehorai, "Direction of arrival estimation using co-prime arrays: A super resolution viewpoint," IEEE Transactions on Signal Processing, Vol. 62, No. 21, 5565-5576, 2014.
    doi:10.1109/TSP.2014.2354316

    18. Shen, Q., W. Liu, W. Cui, S. Wu, Y. Zhang, and M. G. Amin, "Low-complexity direction-of-arrival estimation based on wideband co-prime arrays," IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), Vol. 23, No. 9, 1445-1453, 2015.
    doi:10.1109/TASLP.2015.2436214

    19. Yin, J. and T. Chen, "Direction-of-arrival estimation using a sparse representation of array covariance vectors," IEEE Transactions on Signal Processing, Vol. 59, No. 9, 4489-4493, 2011.
    doi:10.1109/TSP.2011.2158425

    20. He, Z., Z. Zhao, Z. Nie, P. Tang, J. Wang, and Q. Liu, "Method of solving ambiguity for sparse array via power estimation based on MUSIC algorithm," Signal Processing, Vol. 92, 542-546, 2012.
    doi:10.1016/j.sigpro.2011.08.020

    21. He, J. and Z. Liu, "Extended aperture 2-D direction finding with a two-parallel-shape-array using propagator method," IEEE Antennas and Wireless Propagation Letters, Vol. 8, No. 4, 323-327, 2009.

    22. Stoica, P. and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 5, 720-741, 1989.
    doi:10.1109/29.17564

    23. Krim, H., P. Forster, and J. G. Proakis, "Operator approach to performance analysis of root- MUSIC and root min-norm," IEEE Transactions on Signal Processing, Vol. 40, No. 7, 1687-1696, 1992.
    doi:10.1109/78.143441

    24. Zhang, Q. T., "Probability of resolution of the MUSIC algorithm," IEEE Transactions on Signal Processing, Vol. 43, No. 4, 978-987, 1995.
    doi:10.1109/78.376849