Vol. 63

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-04-19

A Dual-Band Meandered Dipole Antenna for Medical Telemetry Applications

By Johnny Ung and Tutku Karacolak
Progress In Electromagnetics Research C, Vol. 63, 85-94, 2016
doi:10.2528/PIERC16012603

Abstract

The aim of this study is to present a dual-band antenna for Wireless Medical Telemetry Service (WMTS) applications. The antenna covers all three frequency bands 608-614 MHz, 1395-1400 MHz, and 1427-1432 MHz, and is intended for continuous health monitoring of patient's vital parameters. The designed antenna consists of a meandered dipole antenna and a superstrate layer to preserve the biocompatibility of the structure. It has a compact size with dimensions 17.6 mm x 12 mm x 2.54 mm. The measured -10 dB bandwidths are found to be 16.3% for the lower frequency band and 10.6% in the upper frequency band. The antenna is in vitro tested in a tissue mimicking solution.

Citation


Johnny Ung and Tutku Karacolak, "A Dual-Band Meandered Dipole Antenna for Medical Telemetry Applications," Progress In Electromagnetics Research C, Vol. 63, 85-94, 2016.
doi:10.2528/PIERC16012603
http://jpier.org/PIERC/pier.php?paper=16012603

References


    1. Kiourti, A. and K. S. Nikita, "A review of implantable patch antennas for biomedical telemetry: Challenged and solutions," IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, 210-228, 2012.
    doi:10.1109/MAP.2012.6293992

    2. Karacolak, T., A. Zach Hood, and E. Topsakal, "Design of a dual band implantable antenna and development of skin mimicking gels for continuous glucose monitoring," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 1001-1008, 2008.
    doi:10.1109/TMTT.2008.919373

    3. Kim, J. and Y. Rahmat-Samii, "Implanted antennas inside a human body: Simulations, designs, and characterizations," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1934-1943, 2004.
    doi:10.1109/TMTT.2004.832018

    4. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Design of implantable microstrip antennas for communication with medical implants," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1944-1951, 2004.
    doi:10.1109/TMTT.2004.831976

    5. Kiourti, A. and K. S. Nikita, "Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations, and link budget analysis," IEEE Trans. Antennas Propag., Vol. 60, No. 6, 3568-3575, 2012.
    doi:10.1109/TAP.2012.2201078

    6. Merli, F., L. Bolomey, J. F. Zurcher, G. Corradini, E. Meurville, and A. K. Skrivervik, "Design, realization and measurements of a miniature antenna for implantable wireless communication systems," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3544-3555, 2011.
    doi:10.1109/TAP.2011.2163763

    7. Gosalia, K., M. S. Humayun, and G. Lazzi, "Impedance matching and implementation of planar space- lling dipoles as intraocular implanted antennas in a retinal prosthesis," IEEE Trans. Antennas Propag., Vol. 53, No. 8, 2365-2373, 2005.
    doi:10.1109/TAP.2005.852514

    8. Chen, Z. N., G. C. Liu, and T. S. P. See, "Transmission of RF signals between MICS loop antennas in free space and implanted in the human head," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1850-1854, 2009.
    doi:10.1109/TAP.2009.2019933

    9. FCC, Washington, DC, USA, "Federal Communications Commission,", 2012 [Online], Available: http://www.fcc.gov.

    10. Wu, C., T. Chien, C. Yang, and C. Luo, "Design of novel S-shaped quad-band antenna for medradio/WMTS/ISM implantable biotelemetry applications," International Journal of Antennas and Propagation, Vol. 2012, 2012.

    11. Shakib, M., M. Moghavvemi, W. Mahadi, and M. Ahmed, "Design of a tri-band implantable antenna for wireless telemetry applications," IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications, 1-3, London, England, Dec. 8-10, 2014.

    12. Shakib, M., M. Moghavvemi, W. Mahadi, and M. Ahmed, "Design of a broadband implantable antenna in the rat for biotelemetry applications," IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications, 239-240, Taipei, Taiwan, Sept. 21-23, 2015.

    13. Ung, J. and T. Karacolak, "A compact ultraminiature coaxial fed antenna for WMTS biotelemetry applications," Microwave and Optical Technology Letters, Vol. 57, No. 4, 987-992, 2015.
    doi:10.1002/mop.28954

    14. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.
    doi:10.1088/0031-9155/41/11/002

    15. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
    doi:10.1088/0031-9155/41/11/001

    16. Seran, S., T. Karacolak, and J. P. Donohoe, "A small implantable dual band biocompatible antenna for medical wireless telemetry applications," IEEE APS/USNC/URSI International Symp., Orlando, Florida, Jul. 7-12, 2013.

    17. Yilmaz, T., T. Karacolak, and E. Topsakal, "Characterization of skin, fat, and muscle mimicking gels for MICS and ISM bands (402{405MHz and 2.4{2.48 GHz)," URSI General Assembly, Chicago, Illinois, Aug. 7-16, 2008.