Recent wearable health monitoring systems use multiple biosensors embedded within a wireless device. In order to reliably transmit the desired vital signs in such systems, a new set of antenna design requirements arise. In this paper, we present a flexible, ultra-low profile, and compact dual band antenna. The proposed design is suitable for wearable and flexible telemedicine systems and wireless body area networks (WBANs). The antenna is inkjet printed on a 50.8 μm Polyimide Kapton substrate and fed by a Coplanar Waveguide (CPW). The proposed design has the merits of compactness, light weight, wide bandwidth, high efficiency, and mechanical stability. The performance of the antenna is also characterized against bending and rolling effects to assess its behavior in a realistic setup since it is expected to be rolled on curved surfaces when operated. The antenna is shown to exhibit very low susceptibility to performance degradation when tested against bending effects. Good radiation characteristics, reduced fabrication complexity, cost effectiveness, and excellent physical properties suggest that the proposed design is a feasible candidate for the targeted application.
2. Huang, Y., J. Chen, Z. Yin, and Y. Xiong, "Roll-to-roll processing of flexible heterogeneous electronics with low interfacial residual stress," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 9, 1368-1377, Sept. 2011.
doi:10.1109/TCPMT.2011.2157692
3. Vanveerdeghem, P., P. Van Torre, C. Stevens, J. Knockaert, and H. Rogier, "Flexible dualdiversity wearable wireless node integrated on a dual-polarised textile patch antenna," IET Science, Measurement & Technology, Vol. 8, No. 6, 452-458, Nov. 2014.
doi:10.1049/iet-smt.2013.0224
4. Bahrami, H., S. A. Mirbozorgi, R. Ameli, L. A. Rusch, and B. Gosselin, "Flexible, polarizationdiverse UWB antennas for implantable neural recording systems," IEEE Transactions on Biomedical Circuits and Systems, Vol. 10, No. 1, 38-48, Feb. 2016.
doi:10.1109/TBCAS.2015.2393878
5. Khaleel, H. R., H. Al-Rizzo, D. Rucker, and Y. Al-Naiemy, "Flexible printed monopole antennas for WLAN applications," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 1334-1337, Jul. 3–8, 2011.
6. Bahramiabarghouei, H., E. Porter, A. Santorelli, B. Gosselin, M. Popovic, and L. A. Rusch, "Flexible 16 antenna array for microwave breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 10, 2516-2525, Oct. 2015.
doi:10.1109/TBME.2015.2434956
7. Huang, H., "Flexible wireless antenna sensor: A review," IEEE Sensors Journal, Vol. 13, No. 10, 3865-3872, Oct. 2013.
doi:10.1109/JSEN.2013.2242464
8. Ouyang, Y., D. Love, and W. Chapel, "Body-worn distributed MIMO system," IEEE Trans. on Vehicular Tech., Vol. 58, No. 4, 16-22, May 2009.
9. Sanz-Izquierdo, B., J. A. Miller, J. C. Batchelor, and M. I. Sobhy, "Dual-band wearable metallic button antennas and transmission in body area networks," IET Microwaves, Antennas & Propagation, Vol. 4, No. 2, 182-190, Feb. 2010.
doi:10.1049/iet-map.2009.0010
10. Chen, H.-D., J.-S. Chen, and Y.-T. Cheng, "Modified inverted-L monopole antenna for 2.4/5GHz dual-band operations," IEE Electron. Lett., Vol. 39, No. 22, 1567-1568, Oct. 2003.
doi:10.1049/el:20031037
11. Wu, J. W., H. M. Hsiao, J. H. Lu, and S. H. Chang, "Dual broadband design of rectangular slot antenna for 2.4 and 5 GHz wireless," IEE Electron. Lett., Vol. 40, No. 23, 1461-1463, Nov. 2004.
doi:10.1049/el:20046873
12. Salonen, P., J. Kim, and Y. Rahmat-Samii, "Dual-band E-shaped patch wearable textile antenna," IEEE Antennas and Propagation Society Symposium, Vol. 1, 466-469, 2014.
13. Anagnostou, D., A. Gheethan, A. Amert, and K. Whites, "A direct-write printed antenna on paper-based organic substrate for flexible displays and WLAN applications," Journal of Display Technology, Vol. 6, No. 11, 558-564, Nov. 2010.
doi:10.1109/JDT.2010.2045474
14. So, J., J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, "Reversibly deformable and mechanically tunable fluidic antennas," Advanced Functional Materials, Vol. 19, No. 22, 3632-3637, Oct. 2009.
doi:10.1002/adfm.200900604
15. Durgun, A. C., M. S. Reese, C. A. Balanis, C. R. Birtcher, D. R. Allee, and S. Venugopal, "Flexible bow-tie antennas," Antennas and Propagation Society International Symposium (APSURSI), IEEE, 1, Jul. 2010.
16. Hertleer, C., A. Tronquo, H. Rogier, L. Vallozzi, and L. Van Langenhove, "Aperture-coupled patch antenna for integration into wearable textile systems," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 392-395, 2007.
doi:10.1109/LAWP.2007.903498
17. Raad, H., A. Abbosh, H. Al-Rizzo, and D. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 524-531, Feb. 2013.
doi:10.1109/TAP.2012.2223449
18., , Dupont Kapton Polyimide specification sheet, www2.dupont.com/kapton.
19., , http://www.fujifilmusa.com/products/industrial inkjet print heads/index.html.
20., , http/www.cst.com.
21. Khaleel, H. R., H. Al-Rizzo, and D. Rucker, "Compact polyimide-based antennas for flexible displays," Journal of IEEE Display Technology, Vol. 8, No. 2, 91-97, Feb. 2012.
doi:10.1109/JDT.2011.2164235