Vol. 63

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-03-23

Practical Design of Filters Using EBG Waveguides Periodically Loaded with Metal Ridges

By Stephan Marini, Pablo Soto, Angela Coves, Benito Gimeno Martinez, and Vicente Boria
Progress In Electromagnetics Research C, Vol. 63, 13-21, 2016
doi:10.2528/PIERC15111603

Abstract

The dispersion diagram of infinite periodic structures is useful for the practical design of waveguide filters. Analyzing the pass- and stop-bands (gaps) in the dispersion diagram of a unit cell, it is possible to generate a finite structure with a very similar electrical response. However, the truncation of the infinite periodic structure degrades the pass-band performance. In this paper, these impairments are overcome by means of suitable waveguide tapers matching the impedance of the periodic structure to the access ports. As a result, the analysis and design of practical low-pass filters, derived from passive structures based on Electromagnetic Band-Gap (EBG) waveguides periodically loaded with metal ridges, are successfully addressed. According to these procedures, a five-order and an eight-order EBG low-pass filters are obtained after an optimization step. Measurements of a manufactured prototype fully validate the proposed approach.

Citation


Stephan Marini, Pablo Soto, Angela Coves, Benito Gimeno Martinez, and Vicente Boria, "Practical Design of Filters Using EBG Waveguides Periodically Loaded with Metal Ridges," Progress In Electromagnetics Research C, Vol. 63, 13-21, 2016.
doi:10.2528/PIERC15111603
http://jpier.org/PIERC/pier.php?paper=15111603

References


    1. Wang, C.-C., H.-C. Chiu, and T.-G. Ma, "A slow-wave multilayer synthesized coplanar waveguide and its applications to rat-race coupler and dual-mode filter," IEEE Trans. Microwave Theory Tech., Vol. 59, No. 7, 1719-1729, 2011.
    doi:10.1109/TMTT.2011.2138713

    2. Chang, W. S. and C.-Y. Chang, "Novel microstrip periodic structure and its application to microwave filter design," IEEE Microw. Wireless Comp. Lett., Vol. 21, No. 3, 124-126, 2011.
    doi:10.1109/LMWC.2011.2105250

    3. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "Switchable and tunable notch in ultra-wideband filter using electromagnetic bandgap structure," IEEE Microw. Wireless Comp. Lett., Vol. 24, No. 12, 839-841, 2014.
    doi:10.1109/LMWC.2014.2363020

    4. Gao, M.-J., L.-S. Wu, and J. F. Mao, "Compact notched ultra-wideband bandpass filter with improved out-of-band performance using quasi electromagnetic bandgap structure," Progress In Electromagnetics Research, Vol. 125, 137-150, 2012.

    5. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
    doi:10.2528/PIER08050101

    6. Goussetis, G., G. Feresidis, and P. Kosmas, "Efficient analysis, design, and filter applications of EBG waveguide with periodic resonantloads," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 11, 3885-3892, 2006.
    doi:10.1109/TMTT.2006.883648

    7. Tang, Y. M., Y. M. Yu, and W. Wu, "Improved EBG-loaded waveguide low-pass filter," Microwave and Optical Techn. Lett., Vol. 50, No. 8, 2090-2093, 2008.
    doi:10.1002/mop.23608

    8. Marini, S., A. Coves, M. Taroncher, V. E. Boria, and B. Gimeno, "Full-wave analysis and applications of EBG waveguides periodically loaded with metal ridges," Proceeding of IEEE MTT-S Int. Microwave Workshop Series on Signal Integrity and High-Speed Interconnects, 87-90, Guadalajara, Mexico, 2009.

    9. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Artech House, Norwood, 1980.

    10. Craven, G., Evanescent Mode Microwave Components, Artech House, Norwood, 1987.

    11. Bornemann, J. and F. Arndt, "Transverse resonance, standing wave, and resonator formulations of the ridge waveguide eigenvalue problem and its application to the design of E-plane finned waveguide filters," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 8, 1104-1113, 1990.
    doi:10.1109/22.57337

    12. Nanan, J.-C., J.-W. Tao, H. Baudrand, B. Theron, and S. Vigneron, "A two-step synthesis of broadband ridged waveguide bandpass filters with improved performances," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 12, 2192-2197, 1991.
    doi:10.1109/22.106564

    13. Fahmi, M. M., J. A. Ruiz-Cruz, R. R. Mansour, and K. A. Zaki, "Compact ridge waveguide filters with arbitrarily placed transmission zeros using nonresonating nodes," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 12, 3354-3361, 2009.
    doi:10.1109/TMTT.2009.2034423

    14. Goussetis, G. and D. Budimir, "E-plane manifold multiplexers with improved bandwidth," Proc. 31st Eur. Microwave Conf., 1-4, London, 2001.

    15. Goussetis, G. and D. Budimir, "Novel periodically loaded E-plane filters," IEEE Microwave and Wireless Comp. Lett., Vol. 13, No. 6, 193-195, 2003.
    doi:10.1109/LMWC.2003.811046

    16. Yazdani, M., L. Murphy, A. Mallahzadeh, E. Arvas, and J. Mautz, "The design of double ridge waveguide filter using conventional stepped impedance low-pass filter method," Microwave and Optical Techn. Lett., Vol. 56, No. 1, 120-124, 2014.
    doi:10.1002/mop.28022

    17. Cameron, R., C. Kudsia, and R. R. Mansour, Microwave Filters: Fundamentals, Design and Applications, John Wiley & Sons, Hoboken, 2007.

    18. Monerris, O., P. Soto, S. Cogollos, V. E. Boria, J. Gil, C. Vicente, and B. Gimeno, "Accurate circuit synthesis of low-pass corrugated waveguide filters," Proc. 40th Eur. Microwave Conf., 1237-1240, Paris, 2001.

    19. Gerini, G., M. Guglielmi, and G. Lastoria, "Efficient integral equation formulations for admittance or impedance representation of planar waveguide junctions," Proceeding of IEEE MTT-S Int. Microwave Symp. Digest, 1998, Vol. 3, 1747-1750, Baltimore, MD, 1998.

    20. Cogollos, S., et al., "Efficient modal analysis of arbitrarily shapedwaveguides composed of linear, circular and elliptical arcs using the BI-RME method," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 12, 2378-2390, 2003.
    doi:10.1109/TMTT.2003.819776

    21. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.

    22. Marini, S., A. Coves, B. Gimeno, and V. E. Boria, "Efficient modal analysis of periodic structures loaded with arbitrarily shaped waveguides," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 3, 529-536, 2010.
    doi:10.1109/TMTT.2010.2040407

    23. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, New York, 1992.

    24. Hoefer, W. J. R. and M. N. Burton, "Closed-form expressions for the parameters of finned and ridged waveguides," IEEE Trans. Microwave Theory Tech., Vol. 30, No. 12, 2190-2194, 1982.
    doi:10.1109/TMTT.1982.1131406

    25. Sharma, A. K. and W. J. R. Hoefer, "Empirical expressions for fin-line design," IEEE Trans. Microwave Theory Tech., Vol. 31, No. 4, 350-356, 1983.
    doi:10.1109/TMTT.1983.1131496

    26. FEST3D 6.7. Aurora Software and Testing S.L. (on behalf of ESA/ESTEC), , Valencia, Spain, [Online].

    27. Ansys HFSS, (High Frequency Structure Simulator), Ansys Inc., Canonsburg, PA, USA.

    28. Marini, S., M. Mattes, B. Gimeno, and V. E. Boria, "Improved computation of propagation losses in waveguide structures using perturbation of boundary conditions," IEEE Microw. Wireless Comp. Lett., Vol. 21, No. 11, 577-579, 2011.
    doi:10.1109/LMWC.2011.2167135

    29. Marini, S., P. Soto, M. Mattes, B. Gimeno, S. Bleda, A. Vidal, and V. E. Boria, "Rigorous evaluation of propagation losses in arbitrarily shaped waveguide structures using boundary integral-resonant mode expansion and perturbation of boundary conditions," IET Microwave, Antennas and Propagation, Vol. 8, No. 12, 980-989, 2014.
    doi:10.1049/iet-map.2013.0414