Vol. 60

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-12-21

A Miniaturized Lotus Shaped Microstrip Antenna Loaded with EBG Structures for High Gain-Bandwidth Product Applications

By Taha Ahmed Elwi, Ahmed Imad Imran, and Yahiea Alnaiemy
Progress In Electromagnetics Research C, Vol. 60, 157-167, 2015
doi:10.2528/PIERC15101804

Abstract

In this paper, the design of a printed circuit antenna based on lotus flower patch of a miniaturized profile is proposed. The antenna consists of three layers including a patch and a ground plane of a thin copper layer separated by a Roger RT/duroid®5880 substrate for high gain-bandwidth product applications including the portable biomedical devices. The patch structure is patterned with triangular defects to provide a fractal structure. Nevertheless, the ground plane is defected with Electromagnetic Band Gap (EBG) structures. The antenna is found to show a first resonant mode around 3 GHz, while the other frequency modes are obtained around 4.2 GHz and 6 GHz which are below -10 dB. Moreover, the antenna operates over the frequency range from 7.8 GHz up to 15 GHz with a bore-sight gain varing from 4 dBi up to 6 dBi when operates in free-space environments. The antenna size is reduced to a 32 mm×28 mm×0.5 mm using shorting plates on the substrate edges. The antenna performance characteristics are examined using CST and HFSS commercial software packages, which are based on the Finite Integration Technique (FIT) and the Finite Element Method (FEM), respectively. Finally, the antenna performance is tested experimentally for both S11 spectrum and radiation patterns to show an excellent matching with the obtained numerical results.

Citation


Taha Ahmed Elwi, Ahmed Imad Imran, and Yahiea Alnaiemy, "A Miniaturized Lotus Shaped Microstrip Antenna Loaded with EBG Structures for High Gain-Bandwidth Product Applications," Progress In Electromagnetics Research C, Vol. 60, 157-167, 2015.
doi:10.2528/PIERC15101804
http://jpier.org/PIERC/pier.php?paper=15101804

References


    1. Federal Communications Commission, "First report and order, revision of Part 15 of Commission's rule regarding ultra-wideband transmission system,", FCC 02-48, Washington, DC, Apr. 2002.
    doi:10.1002/0471221112

    2. Wong, K. L., Compact and Broadband Microstrip Antennas, John Wiley & Sons, 2002.
    doi:10.1002/(SICI)1098-2760(19990905)22:5<348::AID-MOP16>3.0.CO;2-V

    3. Wu, C. K. and K. L. Wong, "Broadband microstrip antenna with directly coupled and gap-coupled parasitic patches," Microw. Opt. Technol. Lett., Vol. 22, No. 5, 348-349, Oct. 1999.
    doi:10.1049/el:19950950

    4. Huynh, T. and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," Electron. Lett., Vol. 31, No. 3, 1310-1311, Sep. 1995.
    doi:10.1109/8.951507

    5. Wong, K. L. and W. H. Hsu, "A broadband rectangular patch antenna with a pair of wide slits," IEEE Trans. Antennas Propag., Vol. 49, 1345-1347, Jan. 2001.
    doi:10.1002/mop.23240

    6. Lao, J., R. Jin, J. Geng, and Q. Wu, "An ultra-wideband microstrip elliptical slot antenna exited by a circular patch," Microw. Opt. Technol. Lett., Vol. 50, No. 4, 845-846, Aug. 2008.
    doi:10.1109/LAWP.2006.878882

    7. Angelopoulos, E. S., A. Z. Anastopoulos, D. I. Kaklamani, A. A. Alexandridis, F. Lazarakis, and K. Dangakis, "Circular and elliptical CPW-fed slot and microstrip-fed antennas for ultrawideband applications," IEEE Antennas Wirel. Propag. Lett., Vol. 5, 294-297, Jun. 2006.
    doi:10.1049/el:20063988

    8. Denidni, T. A. and M. A. Habib, "Broadband printed CPW-fed circular slot antenna," Electron. Lett., Vol. 42, No. 3, 135-136, Dec. 2006.
    doi:10.1109/LAWP.2007.891522

    9. Azenui, N. C. and H. Y. D. Yang, "A printed crescent patch antenna for ultrawideband applications," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 113-116, Apr. 2007.

    10. Sudarsan, D., Y. K. Choukiker, S. K. Behera, and O. K. Kennedy, "Compact lotus shape planar microstrip antenna for UWB applications," App. Electromagnetic Conf., 18-20, Dec. 2013.
    doi:10.1103/PhysRevLett.89.213902

    11. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902: 1-4, 2002.

    12. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E Statistical, Nonlinear, and Soft Matter Physics, Vol. 70, No. 42, 046608-1, Oct. 2004.
    doi:10.1007/s00339-006-3820-9

    13. Wu, Q., P. Pan, F. Y. Meng, L. W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Applied Physics A Materials Science and Processing, Vol. 87, No. 2, 151-156, Feb. 2007.

    14. Xiao, Z. and H. Xu, "Low refractive metamaterials for gain enhancement of horn antenna," Journal of Infrared Millimeter and Terahertz Waves, Vol. 30, 225-232, Jul. 2009.
    doi:10.1007/s10762-010-9712-2

    15. Kim, D. and J. Choi, "Analysis of antenna gain enhancement with a new planar metamaterial superstrate: An effective medium and a Fabry-Perot resonance approach," Journal of Infrared Millimeter and Terahertz Waves, Vol. 31, No. 11, 1289-1303, Aug. 2010.

    16. Hrabar, S., D. Bonefacic, and D. Muha, "ENZ-based shortened horn antenna: An experimental study," Antennas and Propagation Society International Symposium, 1-4, San Diego, CA, United States, Apr. 2008.
    doi:10.1002/mop.24469

    17. Ju, J., D. Kim, W. J. Lee, and J. I. Choi, "Wideband high-gain antenna using metamaterial superstrate with the zero refractive index," Microw. Opt. Technol. Lett., Vol. 51, No. 8, 1973-1976, Sep. 2009.

    18. Pipes, L. A. and L. R. Harvill, Applied Mathematics for Engineers and Physicists, 3rd Dover Books on Mathematics, Jun. 2014.
    doi:10.1002/mop.28261

    19. Hou, Q. W., Y. Y. Su, and X. P. Zhao, "A high gain patch antenna based PN zero permeability metamaterial," Microw. Opt. Technol. Lett., Vol. 56, No. 5, 1065-1069, May 2014.
    doi:10.2528/PIER12082112

    20. Meng, F.-Y., Y.-L. Lyu, K. Zhang, Q. Wu, and J. L.-W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.

    21. Ibrahim, O. A., T. A. Elwi, and N. E. Islam, "Gain enhancement of microstrip antennas using UC-PBG layer," Canadian Journal on Electrical and Electronics Engineering, Vol. 3, No. 9, 480-483, ID: EEE-1211-016, Nov. 2012.
    doi:10.1016/j.aeue.2014.03.013

    22. Elwi, T. A., Z. Abbas, M. A. Elwi, and M. M. Hamed, "On the performance of the 2D planar metamaterial structure," International Journal of Electronics and Communications, Vol. 68, No. 9, 846-850, Sep. 2014.

    23. Pipes, L. A. and L. R. Harvill, Applied Mathematics for Engineers and Physicists, 3rd Dover Books on Mathematics, 2014.
    doi:10.2528/PIERL12070409

    24. Elwi, T. A., "A further investigation on the performance of the broadside coupled rectangular split ring resonators," Progress In Electromagnetics Research Letters, Vol. 34, 1-8, 2012.
    doi:10.2528/PIER11072710

    25. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

    26. Valagiannopoulos, C. A., "Electromagnetic propagation into parallel-plate waveguide in the presence of a Skew metallic surface," Electromagnetics, Vol. 31, 593-605, Oct. 2011.