Vol. 61

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-01-12

A Dual-Band Low-Profile Metasurface-Enabled Wearable Antenna for WLAN Devices

By He-Lin Yang, Wang Yao, Yuanyuan Yi, Xiaojun Huang, Song Wu, and Boxun Xiao
Progress In Electromagnetics Research C, Vol. 61, 115-125, 2016
doi:10.2528/PIERC15092803

Abstract

This paper presents a compact, low-profile, wearable dual-band antenna operating in the Wireless WLAN band of 5.15~5.25 GHz and 5.72~5.83 GHz. The proposed antenna is composed of a planar monopole and underneath three by three array arrangement of Jerusalem Cross (JC) structure metasurface. The simulated results show that the integrated antenna express 4.09% and 4.14% impendence bandwidths, increased gain up to 7.9 dB and 8.2 dB, front to back (FB) ratio achieved to 20 dB and 18 dB at the two frequencies, respectively. The measured results agree well with simulations. In addition, the metasurface not only is equivalent to a ground plane for isolation, but also acts as the main radiator, which enables a great reduction in the specific absorption rate (SAR). Furthermore, because of a compact solution, the proposed integrated antenna can be a promising device for various wearable systems.

Citation


He-Lin Yang, Wang Yao, Yuanyuan Yi, Xiaojun Huang, Song Wu, and Boxun Xiao, "A Dual-Band Low-Profile Metasurface-Enabled Wearable Antenna for WLAN Devices," Progress In Electromagnetics Research C, Vol. 61, 115-125, 2016.
doi:10.2528/PIERC15092803
http://jpier.org/PIERC/pier.php?paper=15092803

References


    1. Alomainy, A., H. Yang, A. Owadally, C. G. Parini, Y. Nechayev, and C. C. Constantinou, "Statistical analysis and performance evaluation for on-body radio propagation with microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 245-248, 2007.
    doi:10.1109/TAP.2006.888462

    2. Hall, P. S., H. Yang, Y. I. Nechayev, A. Alomainy, C. C. Constantinou, and C. Parini, "Antennas and propagation for on-body communication systems," IEEE Antennas and Propagation Magazine, Vol. 49, No. 3, 41-58, 2007.
    doi:10.1109/MAP.2007.4293935

    3. Hertleer, C., A. VanLaere, H. Rogier, and L. van Langenhove, "Influence of relative humidity on textile antenna performance," Textile Research Journal, Vol. 80, No. 2, 177-183, 2009.
    doi:10.1177/0040517509105696

    4. Osman, M. A. R., M. K. Abd Rahim, N. A. Samsuri, H. A. M. Salim, and M. F. Ali, "Embroidered fully textile wearable antenna for medical monitoring applications," Progress In Electromagnetics Research, Vol. 117, 321-337, 2011.
    doi:10.2528/PIER11041208

    5. Kurup, D., W. Joseph, G. Vermeeren, and L. Martens, "Specific absorption rate and path loss in specific body location in heterogeneous human model," IET Microwaves, Antennas & Propagation, Vol. 7, No. 1, 35-43, 2013.
    doi:10.1049/iet-map.2011.0559

    6. Nechayev, Y. I., X. Wu, C. C. Constantinou, and P. S. Hall, "Millimetre-wave path-loss variability between two body-mounted monopole antennas," IET Microwaves, Antennas & Propagation, Vol. 7, No. 1, 1-7, 2013.
    doi:10.1049/iet-map.2011.0564

    7. Bai, Q. and R. Langley, "Crumpling of PIFA textile antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 63-70, 2012.
    doi:10.1109/TAP.2011.2167944

    8. Soh, P. J., G. A. E. Vandenbosch, O. S. Liam, and N. H. M. Rais, "Design of a broadband all-textile slotted PIFA," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 379-384, 2012.
    doi:10.1109/TAP.2011.2167950

    9. Geng, J.-P., J. Li, R.-H. Jin, S. Ye, X. Liang, and M. Li, "The development of curved microstrip antenna with defected ground structure," Progress In Electromagnetics Research, Vol. 98, 53-73, 2009.
    doi:10.2528/PIER09081905

    10. Shao, Z. Z. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 926-935, 2009.
    doi:10.1109/TAP.2009.2014527

    11. Koschny, T., M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Physical Review Letters, Vol. 93, No. 10, 107402, 2004.
    doi:10.1103/PhysRevLett.93.107402

    12. Schurig, D., J. Mock, and D. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, No. 4, 041109, 2006.
    doi:10.1063/1.2166681

    13. Gay-Balmaz, P. and O. J. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," Journal of Applied Physics, Vol. 92, No. 5, 2929-2936, 2002.
    doi:10.1063/1.1497452

    14. Nanfang, Y., P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
    doi:10.1126/science.1210713

    15. Zhu, H., S. W. Cheung, K. L. Chung, and T. I. Yuk, "Linear-to-circular polarization conversion using metasurface," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4615-4623, 2013.
    doi:10.1109/TAP.2013.2267712

    16. Dickie, R., R. Cahill, N. Mitchell, H. Gamble, and V. Fusco, "664 GHz dual polarisation frequency selective surface," Electronics Letters, Vol. 46, No. 7, 472-474, 2010.
    doi:10.1049/el.2010.3462

    17. Vallecchi, A., J. R. De Luis, F. Capolino, and F. D. Flaviis, "Low profile fully planar folded dipole antenna on a high impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 51-62, 2012.
    doi:10.1109/TAP.2011.2167912

    18. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    19. Simovski, C. R., P. de Maagt, and I. V. Melchakova, "High-impedance surfaces having stable resonance with respect to polarization and incidence angle," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 3, 908-914, 2005.
    doi:10.1109/TAP.2004.842598

    20. Kundu, A. and A. K. Bhattacharjee, "Design of compact triple frequency microstrip antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 57, No. 9, 2125-2129, 2015.
    doi:10.1002/mop.29284

    21. Burokur, S. N., J. P. Daniel, P. Ratajczak, and A. de Lustrac, "Tunable bilayered metasurface for frequency reconfigurable directive emissions," Applied Physics Letters, Vol. 97, No. 6, 064101, 2010.
    doi:10.1063/1.3478214

    22. Wakatsuchi, H., S. Kim, J. J. Rushton, and D. F. Sievenpiper, "Circuit-based nonlinear metasurface absorbers for high power surface currents," Applied Physics Letters, Vol. 102, No. 21, 214103, 2013.
    doi:10.1063/1.4809535

    23. Yuandan, D. and T. Itoh, "Metamaterial-based antennas," Proceedings of the IEEE, Vol. 100, No. 7, 2271-2285, 2012.
    doi:10.1109/JPROC.2012.2187631

    24. Liu, Y. and X. Zhang, "Metamaterials: A new frontier of science and technology," Chemical Society Reviews, Vol. 40, No. 5, 2494-2507, 2011.
    doi:10.1039/c0cs00184h

    25. Jiang, Z., D. E. Brocker, P. E. Sieber, and D. H. Werner, "A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4021-4030, 2014.
    doi:10.1109/TAP.2014.2327650

    26. Ziolkowski, R. W., P. Jin, and C.-C. Lin, "Metamaterial-inspired engineering of antennas," Proceedings of the IEEE, Vol. 99, No. 10, 1720-1731, 2011.
    doi:10.1109/JPROC.2010.2091610

    27. Raad, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 524-531, 2013.
    doi:10.1109/TAP.2012.2223449

    28. Jiang, Z. and D. H. Werner, "Robust low-profile metasurface-enabled wearable antennas for off-body communications," 2014 8th European Conference on Antennas and Propagation (EuCAP), April 2014.

    29. Cahill, R. and E. A. Parker, "Concentric ring and Jerusalem cross arrays as frequency selective surfaces for a 45A˚ incidence diplexer," Electronics Letters, Vol. 18, No. 8, 313-314, 1982.
    doi:10.1049/el:19820213

    30. Stuchly, M. and S. Stuchly, "Dielectric properties of biological substances-tabulated," Journal of Microwave Power, Vol. 15, No. 1, 19-26, 1980.