Vol. 62

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Design and Simulation of Fully Printable Conformal Antennas with BST/Polymer Composite Based Phase Shifters

By Mahdi Haghzadeh, Hamzeh M. Jaradat, Craig Armiento, and Alkim Akyurtlu
Progress In Electromagnetics Research C, Vol. 62, 167-178, 2016


A fully printable and conformal antenna array on a flexible substrate with a new Left-Handed Transmission Line (LHTL) phase shifter based on a tunable Barium Strontium Titanate (BST)/polymer composite is proposed and computationally studied for radiation pattern correction and beam steering applications. First, the subject 1×4 rectangular patch antenna array is configured as a curved conformal antenna, with both convex and concave bending profiles, and the effects of bending on the performance are analyzed. The maximum gain of the simulated array is reduced from the flat case level by 34.4% and 34.5% for convex and concave bending, respectively. A phase compensation technique utilizing the LHTL phase shifters with a coplanar design is used to improve the degraded radiation patterns of the conformal antennas. Simulations indicate that the gain of the bent antenna array can be improved by 63.8% and 68% for convex and concave bending, respectively. For the beam steering application, the proposed phase shifters with a microstrip design are used to steer the radiation beam of the antenna array, in planar configuration, to both negative and positive scan angles, thus realizing a phased array antenna.


Mahdi Haghzadeh, Hamzeh M. Jaradat, Craig Armiento, and Alkim Akyurtlu, "Design and Simulation of Fully Printable Conformal Antennas with BST/Polymer Composite Based Phase Shifters," Progress In Electromagnetics Research C, Vol. 62, 167-178, 2016.


    1. Seok, S. and J. Kim, "Design, fabrication, and characterization of a wideband 60 GHz bandpass filter based on a flexible PerMX polymer substrate," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, No. 8, 1384-1389, 2013.

    2. Byun, K., H. Subbaraman, X. Lin, X. Xu, and R. T. Chen, "A 3 μm channel, ink-jet printed CNTTFT for phased array antenna applications," IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), 1-3, 2013.

    3. Wang, C., J. Chien, K. Takei, T. Takahashi, J. Nah, A. M. Niknejad, and A. Javey, "Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications," Nano Letters, Vol. 12, No. 3, 1527-1533, 2012.

    4. Zhang, K., J.-H. Seo, W. Zhou, and Z. Ma, "Fast flexible electronics using transferrable silicon nanomembranes," Journal of Physics D: Applied Physics, Vol. 45, No. 14, 143001, 2012.

    5. Kim, S., et al., "Inkjet-printed antennas, sensors and circuits on paper substrate," IET Microwaves, Antennas & Propagation, Vol. 7, No. 10, 858-868, 2013.

    6. Waterhouse, R. B., Printed Antennas for Wireless Communications, Wiley Online Library, 2007.

    7. Rida, A., L. Yang, R. Vyas, and M. M. Tentzeris, "Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID andWSN applications," IEEE Antennas and Propagation Magazine, Vol. 51, No. 3, 13-23, 2009.

    8. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons Inc., New York, 2016.

    9. Josefsson, L. and P. Persson, Conformal Array Antenna Theory and Design, Vol. 29, John Wiley & Sons Inc., New York, 2006.

    10. Salonen, P., J. Kim, and Y. Rahmat-Samii, "Dual-band E-shaped patch wearable textile antenna," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 466-469, 2005.

    11. Schippers, H., G. Spalluto, and G. Vos, "Radiation analysis of conformal phased array antennas on distorted structures," IET Conference Proceedings, Vol. 3, 160-163, Jan. 2003.

    12. Knott, P., "Deformation and vibration of conformal antenna arrays and compensation techniques," Tech. Rep., FGAN-FHR Research Institute for High Frequency Physics and Radar Techniques Wachtberg, Germany, 2006.

    13. Wincza, K. and S. Gruszczynski, "Influence of curvature radius on radiation patterns in multibeam conformal antennas," IEEE 36th European Microwave Conference, 1410-1413, 2006.

    14. Seidel, T. J., W. S. T. Rowe, and K. Ghorbani, "Passive compensation of beam shift in a bending array," Progress In Electromagnetics Research C, Vol. 29, 41-53, 2012.

    15. Braaten, B. D., S. Roy, S. Nariyal, M. Al Aziz, N. F. Chamberlain, I. Irfanullah, M. T. Reich, and D. Anagnostou, "A self-adapting flexible (SELFLEX) antenna array for changing conformal surface applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 655-665, 2013.

    16. Sazegar, M., Y. Zheng, H. Maune, C. Damm, X. Zhou, J. Binder, and R. Jakoby, "Low-cost phased-array antenna using compact tunable phase shifters based on ferroelectric ceramics," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 5, 1265-1273, 2011.

    17. Moussessian, A., L. Del Castillo, J. Huang, G. Sadowy, J. Hoffman, P. Smith, T. Hatake, C. Derksen, B. Lopez, and E. Caro, "Active membrane phased array radar,", Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA, 2005.

    18. Chung, D. J., S. Bhattacharya, G. Ponchak, and J. Papapolymerou, "Recent advances in the development of a lightweight, flexible 16 × 16 antenna array with RF MEMS shifters at 14 GHz," 8th Annu. NASA Earth Sci. Technol. Conf., 2008.

    19. Vaillancourt, J., et al., "All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz," Applied Physics Letters, Vol. 93, No. 24, 243301, 2008.

    20. Chen, M. Y., X. Lu, H. Subbaraman, and R. T. Chen, "Fully printed phased-array antenna for space communications," SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, 731-814, 2009.

    21. Chen, M. Y., D. Pham, H. Subbaraman, X. Lu, and R. T. Chen, "Conformal ink-jet printed-band phased-array antenna incorporating carbon nanotube field-effect transistor based reconfigurable true-time delay lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 1, 179-184, 2012.

    22. Subbaraman, H., D. T. Pham, X. Xu, M. Y. Chen, A. Hosseini, X. Lu, and R. T. Chen, "Inkjetprinted two-dimensional phased-array antenna on a flexible substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 170-173, 2013.

    23. Pham, D. T., H. Subbaraman, M. Y. Chen, X. Xu, and R. T. Chen, "Light weight and conformal 2-bit, 1×4 phased-array antenna with CNT-TFT-based phase shifter on a flexible substrate," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4553-4558, 2011.

    24. Gevorgian, S., Ferroelectrics in Microwave Devices, Circuits and Systems: Physics, Modeling, Fabrication and Measurements, Springer Science & Business Media, 2009.

    25. Liou, J. W. and B. S. Chiou, "Dielectric tunability of barium strontium titanate/silicone-rubber composite," Journal of Physics: Condensed Matter, Vol. 10, No. 12, 2773, 1998.

    26. Hadik, N., A. Outzourhit, A. Elmansouri, A. Abouelaoualim, A. Oueriagli, and E. Ameziane, "Dielectric behavior of ceramic (BST)/epoxy thick films," Active and Passive Electronic Components, 2009.

    27. Wang, H., F. Xiang, and K. Li, "Ceramic-polymer Ba0.3Sr0.7TiO3/Poly(Methyl Methacrylate) composites with different type composite structures for electronic technology," International Journal of Applied Ceramic Technology, Vol. 7, No. 4, 435-443, 2010.

    28. Hu, T., J. Juuti, and H. Jantunen, "RF properties of BST-PPS composites," Journal of the European Ceramic Society, Vol. 27, No. 8, 2923-2926, 2007.

    29. Hu, T., J. Juuti, H. Jantunen, and T. Vilkman, "Dielectric properties of BST/polymer composite," Journal of the European Ceramic Society, Vol. 27, No. 13, 3997-4001, 2007.

    30. Haghzadeh, M., L. M. Bhowmik, C. Armiento, and A. Akyurtlu, "Printed tunable miniaturized frequency selective surface with BST/polymer composite filled interdigital capacitors," IEEE USNCURSI Radio Science Meeting (Joint with AP-S Symposium), 154-154, 2014.

    31. Haghzadeh, M. and A. Akyurtlu, "RF measurement technique for characterizing printed ferroelectric dielectrics," 37th Annual Meeting & Symposium, Antenna Measurement Techniques Association (AMTA), 2015.

    32. Haghzadeh, M., C. Armiento, and A. Akyurtlu, "Electrostatic and full wave simulations of interdigitated BST varactors with buried plates," IEEE 31st International Review of Progress in Applied Computational Electromagnetics (ACES), 1-2, 2015.

    33. Lai, A., T. Itoh, and C. Caloz, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, 2004.

    34. Erker, E. G., et al., "Monolithic Ka-band phase shifter using voltage tunable BaSrTiO3 parallel plate capacitors," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 1, 10-12, 2000.

    35. Vélu, G., K. Blary, L. Burgnies, J. C. Carru, E. Delos, A. Marteau, and D. Lippens, "A 310°/3.6-dB K-band phaseshifter using paraelectric BST thin films," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 2, 87-89, 2006.

    36. Sherman, V. O., T. Yamada, A. Noeth, N. Setter, M. Mandeljc, B. Malic, M. Kosec, and M. Vukadinovic, "Microwave phase shifters based on sol-gel derived Ba0.3Sr0.7TiO3 ferroelectric thin films," IEEE EuMIC European Microwave Integrated Circuit Conference, 497-500, 2007.

    37. Satish, G. N., K. Srivastava, A. Biswas, and D. Kettle, "A via-free left-handed transmission line with radial stubs," IEEE APMC Asia Pacific Microwave Conference, 2501-2504, 2009.

    38. Bhowmik, L. M., C. Armiento, A. Akyurtlu, W. Miniscalco, J. Chirravuri, and C. McCarroll, "Design and analysis of conformal Ku-band microstrip patch antenna arrays," 2013 IEEE International Symposium on Phased Array Systems & Technology, 815-820, 2013.

    39. Haupt, R. L., Antenna Arrays: A Computational Approach, John Wiley & Sons Inc., New York, 2010.