Vol. 56

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-03-31

Design and Development of Halbach Electromagnet for Active Magnetic Bearing

By Kootta Parambil Lijesh and Harish Hirani
Progress In Electromagnetics Research C, Vol. 56, 173-181, 2015
doi:10.2528/PIERC15011411

Abstract

Active Magnetic Bearings (AMBs) are advantageous due to their active control on rotor position, but are disadvantageous due to their high initial as well running costs. The running cost of AMB can be reduced by improving design of electromagnet so that the same magnetic field can be generated with reduced supply of electric current. In the present paper, analyses of various arrangements of electromagnets using 2D finite element (FE) have been presented. To validate the results of magnetic flux density obtained from theoretical study, experiments were performed, and comparisons have been presented. The electromagnet using Halbach winding arrangement provides the best results.

Citation


Kootta Parambil Lijesh and Harish Hirani, "Design and Development of Halbach Electromagnet for Active Magnetic Bearing," Progress In Electromagnetics Research C, Vol. 56, 173-181, 2015.
doi:10.2528/PIERC15011411
http://jpier.org/PIERC/pier.php?paper=15011411

References


    1. Betschon, F., "Design principles of integrated magnetic bearings,", PhD Thesis, 31–32, Swiss Federal Institute of Technology, 2000.
    doi:10.1109/TMAG.2012.2196443

    2. Fang, J., Y. Le, J. Sun, and K. Wang, "Analysis and design of passive magnetic bearing and damping system for high-speed compressor," IEEE Transactions on Magnetics, Vol. 48, No. 9, 2528-2537, 2012.
    doi:10.1109/TMECH.2005.859830

    3. Noh, M. D., S. R. Cho, J. H. Kyung, S. K. Ro, and J. K. Park, "Design and implementation of a fault-tolerant magnetic bearing system for turbomolecular vacuum pump," IEEE/ASME Trans. Mechatronics, Vol. 10, No. 6, 626-631, 2005.
    doi:10.1115/1.4029073

    4. Lijesh, K. P. and H. Hirani, "Optimization of eight pole radial active magnetic bearing," ASME, Journal of Tribology, Vol. 137, No. 2, 2015, doi: 10.1115/1.4029073.
    doi:10.1109/77.920097

    5. Nagaya, S., N. Kashima, M. Minami, H. Kawashima, and S. Unisuga, "Study on high temperature superconducting magnetic bearing for 10 kWh flywheel energy storage system," IEEE Transactions on Applied Superconductivity, Vol. 11, No. 1, 1649-1652, 2001.
    doi:10.1002/ls.1252

    6. Lijesh, K. P. and H. Hirani, "Stiffness and damping coefficients for rubber mounted hybrid bearing," Lubrication Science, Vol. 26, No. 5, 301-314, 2014.
    doi:10.1243/13506501JET282

    7. Hirani, H. and P. Samanta, "Hybrid (hydrodynamic + permanent magnetic) journal bearings," Proc. Inst. Mech. Eng., Part J, J. Eng. Tribol., Vol. 221, No. 8, 881-891, 2007.

    8. Schweitzer, G., H. Bleuler, and A. Traxler, "Active magnetic bearing, basics, properties and applications of active magnetic bearing,", Vdf Hochschulverlag AG an der ETH, Zurich, 1994.
    doi:10.1109/41.45839

    9. Williams, R. D., F. J. Keith, and P. E. Allaire, "Digital control of active magnetic bearings," IEEE Transactions on Industrial Electronics, Vol. 37, No. 1, 19-27, 1990.
    doi:10.1109/TMECH.2007.892827

    10. Sahinkaya, M. N., A. H. G. Abulrub, P. S. Keogh, and C. R. Burrows, "Multiple sliding and rolling contact dynamics for a flexible rotor/magnetic bearing system," IEEE/ASME Trans. Mechatronics, Vol. 12, No. 2, 179-189, 2007.
    doi:10.1109/TMECH.2005.859830

    11. Noh, M. D., S. R. Cho, J. H. Kyung, S. K. Ro, and J. K. Park, "Design and implementation of a fault-tolerant magnetic bearing system for turbo molecular vacuum pump," IEEE/ASME Trans. Mechatronics, Vol. 10, No. 6, 626-631, 2005.

    12. Shankar, S., S. Sandeep, and H. Hirani, "Active magnetic bearing: A theoretical and experimental study," Ind. J. Tribol., Vol. 1, 15-25, 2006.
    doi:10.1063/1.349857

    13. Yonnet, J. P., G. Lemarquand, S. Hemmerlin, and E. Olivier-Rulliere, "Stacked structures of passive magnetic bearings," J. Appl. Phys., Vol. 70, No. 10, 6633-6635, 1991.

    14. Xu, F., L. Tiecai, Y. Liu, and H. Magnetization, "A study on passive magnetic bearing with Halbach magnetized array," International Conference on Electrical Machines and Systems, 2008, ICEMS 2008, 417-420, 2008.
    doi:10.1109/TMAG.2012.2196443

    15. Fang, J., Y. Le, J. Sun, and K. Wang, "Analysis and design of passive magnetic bearing and damping system for high-speed compressor," IEEE Transactions on Magnetics, Vol. 48, No. 9, 2528-2537, 2012.
    doi:10.1016/0029-554X(80)90094-4

    16. Halbach, K., "Design of permanent multipole magnets with oriented rare earth cobalt material," Nuclear Instruments and Methods, Vol. 169, 1-10, 1980.

    17. Mark, A. C., "Electric motor with Halbach arrays,", US 7598646 B2, 2007.
    doi:10.1109/TMAG.2011.2148110

    18. Gan, Z., X. Huang, H. Jiang, L. Tan, and J. Dong, "Analysis method to a Halbach PM ironless linear motor with trapezoid windings," IEEE Transactions on Magnetics, Vol. 47, No. 10, 4167-4170, 2011.
    doi:10.1016/j.mechatronics.2006.03.004

    19. Edward, J. P., D. Stoikov, L. F. da Luz, and A. Suleman, "A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller," Mechatronics, Vol. 16, No. 7, 405-416, 2006.
    doi:10.1109/PAC.2001.986521

    20. Hartman, N. and R. A. Rimmer, "Electromagnetic, thermal, and structural analysis of RF cavities using ANSYS," Proceedings of the 2001 Particle Accelerator Conference, 2001, PAC 2001, Vol. 2, 912-914, 2001.

    21. Pilat, A., "FEMLab software applied to active magnetic bearing analysis," International Journal of Applied Mathematics and Computer Science, Vol. 14, 497-501, 2004.

    22. Karus, J. D. and D. A. Fleisch, Electromagnetics with Applications, McGraw-Hill International Editions, 5th edition, Singapore, 1999.