Vol. 56

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-03-19

An Improved Design of Dual-Band 3 dB 180° Directional Coupler

By Bayaner Arigong, Jin Shao, Mi Zhou, Han Ren, Jun Ding, Qianli Mu, Yang Li, Song Fu, Hyoungsoo Kim, and Hualiang Zhang
Progress In Electromagnetics Research C, Vol. 56, 153-162, 2015
doi:10.2528/PIERC15011204

Abstract

A novel design concept of dual-band 180° hybrid ring coupler is presented in this paper. Coupler is a key element in front-end building blocks of wireless transceiver systems such as industrial systems and consumer electronic devices. The proposed design is realized by combining multiple arbitrary length transmission lines operating at two frequencies with one dual-band 180° phase shifter. The even-odd mode method is applied to derive the design equations for proposed dual-band 3 dB 180° directional coupler. Based on the analysis, it is found that the realizable frequency ratio of the proposed coupler is very flexible (i.e. the ratio between the two operating frequencies). Moreover, the 180° phase shifter features arbitrary characteristic impedance (i.e. its characteristic impedance can be arbitrarily chosen), which further ensures the easy implementation of proposed structures. To prove the design concept, full-wave electromagnetic simulations are performed to design a dual-band ring hybrid coupler working at 0.9 and 1.98 GHz. An experimental prototype is fabricated on Rogers RT/Duroid 5880 board. The measurement results match well with the theoretical and numerical ones.

Citation


Bayaner Arigong, Jin Shao, Mi Zhou, Han Ren, Jun Ding, Qianli Mu, Yang Li, Song Fu, Hyoungsoo Kim, and Hualiang Zhang, "An Improved Design of Dual-Band 3 dB 180° Directional Coupler," Progress In Electromagnetics Research C, Vol. 56, 153-162, 2015.
doi:10.2528/PIERC15011204
http://jpier.org/PIERC/pier.php?paper=15011204

References


    1. Chang, S. R., W. Chen, S. Chang, C. Tu, C. Wei, C. Chien, C. Tsai, J. Chen, and A. Chen, "A dual-band RF transceiver for multistandard WLAN applications," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 3, 1048-1055, Mar. 2002.

    2. Chen, X.-Q., X.-W. Shi, Y.-C. Guo, and M.-X. Xiao, "A novel dual band transmitter using microstrip defected ground structure," Progress In Electromagnetics Research, Vol. 83, 1-11, 2008.
    doi:10.2528/PIER08041503

    3. Xie, H., X. Wang, L. Lin, H. Tang, Q. Fang, H. Zhao, S. Wang, F. Yao, A. Wang, Y. Zhou, and B. Qin, "A 52-mW 3.1-10.6-GHz fully integrated correlator for IR-UWB transceivers in 0.18 μm CMOS," IEEE Trans. Ind. Electron., Vol. 57, No. 5, 1546-1554, May 2010.
    doi:10.1109/TIE.2009.2031670

    4. Monti, G., R. De Paolis, and L. Tarricone, "Design of a 3-state reconfigurable CRLH transmission line based on MEMS switches," Progress In Electromagnetics Research, Vol. 95, 283-297, 2009.
    doi:10.2528/PIER09071109

    5. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, NJ, 2011.

    6. Zheng, S. and W. Chan, "Differential RF phase shifter with harmonic suppression," IEEE Trans. Ind. Elctron., Vol. 61, No. 6, 2891-2899, Jun. 2014.
    doi:10.1109/TIE.2013.2273478

    7. Zhang, H. and K. J. Chen, "A tri-section stepped-impedance resonator for cross-coupled bandpass filters," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 6, 401-403, Jun. 2005.
    doi:10.1109/LMWC.2005.850475

    8. Fan, J.-W., C.-H. Liang, and D. Li, "Design of cross-coupled dual-band filter with equal-length split-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
    doi:10.2528/PIER07060904

    9. Wu, G.-L., W. Mu, D. Li, and Y.-C. Jiao, "Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR DGS," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
    doi:10.2528/PIER07090301

    10. Zhou, R., Z. Zhang, C. Chen, and H. Zhang, "Design of dual-band microwave duplexers," Electron. Lett., Vol. 50, No. 3, 219-221, Jan. 2014.
    doi:10.1049/el.2013.3731

    11. Zhang, H. and H. Xin, "Designs of dual-band Wilkinson power dividers with flexible frequency ratios," IEEE MTT-S. Int. Microwave Symp. Dig., Vol. 15, No. 20, 1223-1226, Jun. 2008.

    12. Wu, Y., Y. Liu, and S. Li, "An unequal dual-frequency Wilkinson power divider with optional isolation structure," IEEE Trans. Ind. Electron., Vol. 60, No. 10, 4737-4745, Oct. 2013.

    13. Wu, Y., Y. Liu, and S. Li, "An unequal dual-frequency Wilkinson power divider with optional isolation structure," Progress In Electromagnetics Research, Vol. 91, 393-411, 2009.
    doi:10.2528/PIER09030501

    14. Lin, Z. and Q.-X. Chu, "A novel approach to the design of dual-band power divider with variable power dividing ratio based on coupled-lines," Progress In Electromagnetics Research, Vol. 103, 271-284, 2010.
    doi:10.2528/PIER10012202

    15. Song, K., Y. Mo, Q. Xue, and Y. Fan, "Wideband four-way out-of-phase slotline power dividers," IEEE Trans. Ind. Electron., Vol. 61, No. 7, 3598-3606, Jul. 2014.
    doi:10.1109/TIE.2013.2279380

    16. Zhang, H., Y. Peng, and H. Xin, "A tapped stepped-impedance balun with dual-band operations," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 119-122, 2008.
    doi:10.1109/LAWP.2008.921315

    17. Shao, J., H. Zhang, C. Chen, S. Tan, and K. J. Chen, "A compact dual-band coupled-line balun with tapped open-ended stubs," Progress In Electromagnetics Research C, Vol. 22, 109-122, 2011.
    doi:10.2528/PIERC11050205

    18. Nedil, M. and T. A. Denidni, "Analysis and design of an ultra wideband directional coupler," Progress In Electromagnetics Research B, Vol. 1, 291-305, 2008.
    doi:10.2528/PIERB07110704

    19. Lopez-Berrocal, B., L. de-Oliva-Rubio, E. Marquez-Segua, A. Moscoso-Martir, I. Molina-Fernandez, and P. Uhlig, "High performance 1.8-18 GHz 10-dB low temperature co-fired ceramic directional coupler," Progress In Electromagnetics Research, Vol. 104, 99-112, 2010.
    doi:10.2528/PIER10040704

    20. Kim, D. and G. Yang, "Design of new hybrid-ring directional coupler using λ/8 or λ/6 sections," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 10, 1779-1784, Oct. 1991.

    21. Zhang, H. and K. J. Chen, "A stub tapped branch-line coupler for dual-band operations," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 106-108, Feb. 2007.
    doi:10.1109/LMWC.2006.890330

    22. Wu, Y., S. Y. Zheng, S. Leung, Y. Liu, and Q. Xue, "An analytical design method for a novel dual-band unequal coupler with four arbitrary terminated resistances," IEEE Trans. Ind. Electron., Vol. 61, No. 10, 5509-5516, 2014.
    doi:10.1109/TIE.2013.2297299

    23. Eccleston, K. W. and S. H. M. Ong, "Compact planner microstripline branch-line and rat-race couplers," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 10, 2119-2125, Oct. 2003.
    doi:10.1109/TMTT.2003.817442

    24. Settaluri, R. K., G. Sundberg, A. Weisshaar, and V. K. Tripathi, "Compact folded line rat-race hybrid couplers," IEEE Trans. Microw. Guided Wave Lett., Vol. 10, No. 2, 61-63, Feb. 2000.
    doi:10.1109/75.843101

    25. Hirota, T., A. Minakawa, and M. Muraguchi, "Reduced-size branch-line and rat-race hybrids for uniplanar MMIC’s," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 3, 270-275, Mar. 1990.
    doi:10.1109/22.45344

    26. Cheng, K. M. and F. L. Wong, "A novel rat-race coupler design for dual-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 8, 521-523, Aug. 2005.
    doi:10.1109/LMWC.2005.852792

    27. Zhang, H. and K. J. Chen, "Design of dual-band rat-race couplers," IET Microw. Antennas & Propag., Vol. 38, No. 3, 270-275, Mar. 2009.