Vol. 56
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-01-30
Design of Slotted Waveguide Antennas with Low Sidelobes for High Power Microwave Applications
By
Progress In Electromagnetics Research C, Vol. 56, 15-28, 2015
Abstract
Slotted waveguide antenna (SWA) arrays offer clear advantages in terms of their design, weight, volume, power handling, directivity, and efficiency. For broadwall SWAs, the slot displacements from the wall centerline determine the antenna's sidelobe level (SLL). This paper presents a simple inventive procedure for the design of broadwall SWAs with desired SLLs. For a specified number of identical longitudinal slots, and given the required SLL and operating frequency, this procedure finds the slots length, width, locations along the length of the waveguide, and displacements from the centerline. Compared to existing methods, this procedure is much simpler as it uses a uniform length for all the slots and employs closed-form equations for the calculation of the displacements. A computer program has been developed to perform the design calculations and generate the needed slots data. Illustrative examples, based on Taylor, Chebyshev and the binomial distributions are given. In these examples, elliptical slots are considered, since their rounded corners are more robust for high power applications. A prototype SWA has been fabricated and tested, and the results are in accordance with the design objectives.
Citation
Hilal M. El Misilmani, Mohammed Al-Husseini, and Karim Youssef Kabalan, "Design of Slotted Waveguide Antennas with Low Sidelobes for High Power Microwave Applications," Progress In Electromagnetics Research C, Vol. 56, 15-28, 2015.
doi:10.2528/PIERC14121903
References

1. Gilbert, R. A., Antenna Engineering Handbook, Chapter: Waveguide Slot Antenna Arrays, McGraw-Hill, 2007.

2. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, 2005.

3. Rueggeberg, W., "A multislotted waveguide antenna for high-powered microwave heating systems," IEEE Trans. Ind. Applicat., Vol. 16, No. 6, 809-813, 1980.
doi:10.1109/TIA.1980.4503876

4. Elliott, R. S. and L. A. Kurtz, "The design of small slot arrays," IEEE Trans. Antennas Propagat., Vol. 26, 214-219, March 1978.
doi:10.1109/TAP.1978.1141814

5. Elliott, R. S., "The design of traveling wave fed longitudinal shunt slot arrays," IEEE Trans. Antennas Propagat., Vol. 27, No. 5, 717-720, September 1979.
doi:10.1109/TAP.1979.1142166

6. Stevenson, A. F., "Theory of slots in rectangular waveguides," Journal of Applied Physics, Vol. 19, 24-38, 1948.
doi:10.1063/1.1697868

7. Elliott, R. S., "An improved design procedure for small arrays of shunt slots," IEEE Trans. Antennas Propagat., Vol. 31, 48-53, January 1983.
doi:10.1109/TAP.1983.1143002

8. Elliott, R. S. and W. R. O’Loughlin, "The design of slot arrays including internal mutual coupling," IEEE Trans. Antennas Propagat., Vol. 34, 1149-1154, September 1986.
doi:10.1109/TAP.1986.1143947

9. Elliott, R. S., "Longitudinal Shunt Slots in Rectangular Waveguide: Part I, Theory,", Tech. Rep., Rantec Report No. 72022-TN-1, Rantec, Calabasas, CA, USA.

10. Baum, C. E., "Sidewall waveguide slot antenna for high power," Sensor and Simulation Note, Vol. 503, August 2005.

11. Al-Husseini, M., A. El-Hajj, and K. Y. Kabalan, "High-gain S-band slotted waveguide antenna arrays with elliptical slots and low sidelobe levels," PIERS Proceedings, Stockholm, Sweden, August 12-15, 2013.

12. Tai, C. T., Characteristics of Liner Antenna Elements, Antenna Engineering Handbook, H. Jasik (ed.), McGraw-Hill, 1961.

13. Oliner, A. A., "The impedance properties of narrow radiating slots in the broad face of rectangular waveguides," IEEE Trans. Antennas Propagat., Vol. 5, No. 1, 4-11, 1957.
doi:10.1109/TAP.1957.1144488

14. Stegen, R. J., "Longitudinal shunt slot characteristics," Hughes Technical Memorandum, Vol. 261, 4-20, Culver City, CA, November 1951.

15. Stevenson, R. J., "Theory of slots in rectangular waveguide," J. App. Phy., Vol. 19, 4-20, 1948.
doi:10.1063/1.1697868

16. Watson, W. H., "Resonant slots," Journal of the Institution of Electrical Engineers — Part IIIA: Radiolocation, Vol. 93, 747-777, 1946.
doi:10.1049/ji-3a-1.1946.0167

17. Coburn, W., M. Litz, J. Miletta, N. Tesny, L. Dilks, C. Brown, and B. King, "A slotted-waveguide array for high-power microwave transmission,", Army Research Laboratory, January 2001.

18. Cullen, A. L., "Laterally displaced slot in rectangular waveguide," Wireless Eng., 3-10, January 1949.

19. Hung, K. L. and H. T. Chou, "A design of slotted waveguide antenna array operated at X-band," IEEE international Conference on Wireless Information Technology and System, 1-4, 2010.

20. Safaai-Jazi, A., "A new formulation for the design of Chebyshev arrays," IEEE Trans. Antennas Propag., Vol. 42, 439-443, 1980.

21. El-Hajj, A., K. Y. Kabalan, and M. Al-Husseini, "Generalized Chebyshev arrays," Radio Science, Vol. 40, RS3010, June 2005.

22. Taylor, T. T., "One parameter family of line-sources producing modified sin(πu)/πu patterns," Hughes Aircraft Co. Tech., Mem. 324, Culver City, Calif., Contract AF 19(604)-262-F-14, September 4, 1953.

23. Balanis, C. A., Antenna Theory Analysis and Design, Wiley, 2005.

24. Kabalan, K. Y., A. El-Hajj, and M. Al-Husseini, "The bessel planar arrays," Radio Science, Vol. 39, No. 1, RS1005, January 2004.