Vol. 55

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-12-30

A Compact UWB Printed Antenna with Bandwidth Enhancement for in-Body Microwave Imaging Applications

By Aref Abdollahvand, Abbas Pirhadi, Homauon Ebrahimian, and Mousa Abdollahvand
Progress In Electromagnetics Research C, Vol. 55, 149-157, 2014
doi:10.2528/PIERC14111405

Abstract

In this paper, we propose novel omnidirectional UWB printed monopole antenna for in-body microwave imaging applications. The proposed antenna consists of a square radiating patch, a microstrip feed line and a ground plane with pair of rotated T-shaped slots and another T-shaped slot that placed in between of two slots. The designed antenna provides a wide usable fractional bandwidth of more than 136.5% (2.96-15.8 GHz). This antenna has the advantages of wide bandwidth, compact size, low cost, good omnidirectional radiation patterns, and acceptable time domain behavior for using in In-Body microwave applications. The maximum measured gain for the fabricated antenna is around 6.1 dBi with an average efficiency above 89% throughout the bandwidth.

Citation


Aref Abdollahvand, Abbas Pirhadi, Homauon Ebrahimian, and Mousa Abdollahvand, "A Compact UWB Printed Antenna with Bandwidth Enhancement for in-Body Microwave Imaging Applications," Progress In Electromagnetics Research C, Vol. 55, 149-157, 2014.
doi:10.2528/PIERC14111405
http://jpier.org/PIERC/pier.php?paper=14111405

References


    1. Balasubramanian, V. and A. Stranieri, "Performance evaluation of the dependable properties of a body area wireless sensor network," International Conference on Optimization, Reliability, and Information Technology (ICROIT), 229-234, 2014.
    doi:10.1109/ICROIT.2014.6798319

    2. Lee, C., J. Kim, H. S. Lee, and J. Kim, "Physical layer designs for WBAN systems in IEEE 802.15.6 proposals," 9th International Symposium on Communications and Information Technology, ISCIT 2009, 841-844, 2009.
    doi:10.1109/ISCIT.2009.5341123

    3. Malik, B. and V. R. Singh, "A survey of research in WBAN for biomedical and scientific applications," Health and Technology, Vol. 3, 227-235, 2013.
    doi:10.1007/s12553-013-0056-5

    4. Otto, C. A., E. Jovanov, and A. Milenkovic, "A WBAN-based system for health monitoring at home," 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors, 20-23, 2006.

    5. Shahzad, A., M. O’Halloran, E. Jones, and M. Glavin, "A preprocessing filter for multistatic microwave breast imaging for enhanced tumour detection," Progress In Electromagnetics Research B, Vol. 57, 115-126, 2014.
    doi:10.2528/PIERB13080606

    6. Zhang, H., T. Arslan, and B. Flynn, "A single antenna based microwave system for breast cancer detection: Experimental results," Loughborough Antennas and Propagation Conference (LAPC), 477-481, 2013.
    doi:10.1109/LAPC.2013.6711945

    7. Ireland, D., K. Bialkowski, and A. Abbosh, "Microwave imaging for brain stroke detection using born iterative method," IET Microwaves, Antennas & Propagation, Vol. 7, 909-915, 2013.
    doi:10.1049/iet-map.2013.0054

    8. Zasowski, T., G. Meyer, F. Althaus, and A. Wittneben, "UWB signal propagation at the human head," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 1836-1845, 2006.
    doi:10.1109/TMTT.2006.871989

    9. Huo, Y., R. Bansal, and Q. Zhu, "Breast tumor characterization via complex natural resonances," IEEE MTT-S International Microwave Symposium Digest, 387-390, 2003.

    10. Huynh, P. T., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radiographics, Vol. 18, 1137-1154, 1998.
    doi:10.1148/radiographics.18.5.9747612

    11. Pancera, E. and W. Wiesbeck, "Fidelity based optimization of UWB antenna-radiation for medical applications," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 2411-2414, 2011.
    doi:10.1109/APS.2011.5997008

    12. Bond, E. J., X. Li, S. C. Hagness, and B. D. van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, Vol. 51, 1690-1705, 2003.
    doi:10.1109/TAP.2003.815446

    13. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging. II. Imaging results," IEEE Transactions on Medical Imaging, Vol. 18, 508-518, 1999.
    doi:10.1109/42.781016

    14. Khor, W. C., M. E. Bialkowski, A. Abbosh, N. Seman, and S. Crozier, "An ultra wideband microwave imaging system for breast cancer detection," IEICE Transactions on Communications, Vol. 90, 2376-2381, 2007.
    doi:10.1093/ietcom/e90-b.9.2376

    15. Mohammed, B. A. J., A. M. Abbosh, and P. Sharpe, "Planar array of corrugated tapered slot antennas for ultrawideband biomedical microwave imaging system," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, 59-66, 2013.
    doi:10.1002/mmce.20651

    16. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, 2318-2326, 2010.
    doi:10.1109/TAP.2010.2048844

    17. Hossain, I., S. Noghanian, and S. Pistorius, "A diamond shaped small planar ultra wide band (UWB) antenna for microwave imaging purpose," IEEE Antennas and Propagation Society International Symposium, 5713-5716, 2007.
    doi:10.1109/APS.2007.4396848

    18. Li, X., M. Jalivand, Y. Sit, and T. Zwick, "A compact double-layer on-body matched bowtie antenna for medical diagnostics," IEEE Transactions on Antennas and Propagation, 1808-1816, 2014.
    doi:10.1109/TAP.2013.2297158

    19. Shannon, C. J., E. C. Fear, and M. Okoniewski, "Dielectric-filled slotline bowtie antenna for breast cancer detection," Electronics Letters, Vol. 41, 388-390, 2005.
    doi:10.1049/el:20057336

    20. Nilavalan, R., I. J. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Wideband microstrip patch antenna design for breast cancer tumour detection," IET Microwaves, Antennas & Propagation, Vol. 1, 277-281, 2007.
    doi:10.1049/iet-map:20050189

    21. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2002.

    22., , http://www.emtalk.com/mscalc.php.

    23. Ansoft High Frequency Structure Simulation (HFSS), Ver. 13, , Ansoft Corporation, 2010.

    24. Computer Simulation Technology (CST) Microwave Studio Software, Version 5.0, .

    25. Foudazi, A., H. R. Hassani, and S. M. A. Nezhad, "Small UWB planar monopole antenna with added GPS/GSM/WLAN bands," IEEE Transactions on Antennas and Propagation, Vol. 60, 2987-2992, 2012.
    doi:10.1109/TAP.2012.2194632

    26., , http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.htm.
    doi:10.1109/TAP.2012.2194632