Vol. 55

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-12-10

A Coupled-Line Based L-Section DC-Isolated Dual-Band Real to Real Impedance Transformer and its Application to a Dual-Band T-Junction Power Divider

By Mohammad A. Maktoomi and Mohammad S. Hashmi
Progress In Electromagnetics Research C, Vol. 55, 95-104, 2014
doi:10.2528/PIERC14110502

Abstract

This paper presents a dual-band impedance transformer for real source and load impedances that is capable of providing matching at two arbitrary frequencies. There are two possible configurations of the proposed technique, and both the configurations are simple and possess flexibility to cater to wide range of impedance environments. A very useful feature of the design is its inherent ability to provide DC isolation. A prototype, which works at 1 GHz and 2 GHz, fabricated using Roger's RO4350B laminate validates the proposed design with a good match between theoretical and experimental results. In addition, a dual-band T-junction power divider is reported to demonstrate the usefulness of the proposed impedance transformer.

Citation


Mohammad A. Maktoomi and Mohammad S. Hashmi, "A Coupled-Line Based L-Section DC-Isolated Dual-Band Real to Real Impedance Transformer and its Application to a Dual-Band T-Junction Power Divider," Progress In Electromagnetics Research C, Vol. 55, 95-104, 2014.
doi:10.2528/PIERC14110502
http://jpier.org/PIERC/pier.php?paper=14110502

References


    1. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Dual-band RF circuits and components for multi-standard software defined radios," IEEE Circuits & Systems Magazine, Vol. 12, No. 1, 12-32, First Quater 2012.
    doi:10.1109/MCAS.2011.2181074

    2. Hashemi, H. and A. Hajimiri, "Concurrent multiband low-noise amplifiers — Theory, design, and applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 1, 288-301, Jan. 2002.
    doi:10.1109/22.981282

    3. Nallam, N. and S. Chatterjee, "Multi-band frequency transformations, matching networks and amplifiers," IEEE Transactions on Circuits & Systems I: Reg. Papers, Vol. 60, No. 6, 1635-1647, Jun. 2013.
    doi:10.1109/TCSI.2012.2221175

    4. Iyer, B. and N. P. Pathak, "A concurrent dual-band LNA for noninvasive vital sign detection system," Wiley Microwave & Optical Technology Letters, Vol. 56, No. 2, 391-394, Feb. 2014.
    doi:10.1002/mop.28127

    5. Park, M. J. and B. Lee, "Dual band design of single stub impedance matching networks with application to dual band stubbed T junctions," Wiley Microwave & Optical Technology Letters, Vol. 52, No. 6, 1359-1362, 2010.
    doi:10.1002/mop.25201

    6. Hsieh, K.-A., H.-S. Wu, K.-H. Tsai, and C.-K. C. Tzuang, "A dual-band 10/24-GHz amplifier design incorporating dual-frequency complex load matching," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 1649-1657, Jun. 2012.
    doi:10.1109/TMTT.2012.2191303

    7. Chow, Y. L. and K. L. Wan, "A transformer of one-third wavelength in two sections — For a frequency and its first harmonic," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 1, 22-23, Jan. 2002.
    doi:10.1109/7260.975723

    8. Monzon, C., "A small dual-frequency transformer in two sections," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1157-1161, Apr. 2003.
    doi:10.1109/TMTT.2003.809675

    9. Sophocles, J. and A. Orfanidis, "Two-section dual-band Chebyshev impedance transformer," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 9, 382-384, Sep. 2003.
    doi:10.1109/LMWC.2003.817135

    10. Castaldi, G., "An exact synthesis method for dual-band Chebyshev impedance transformers," Progress In Electromagnetics Research, Vol. 86, 305-319, 2008.
    doi:10.2528/PIER08100605

    11. Wu, Y., Y. Liu, and S. Li, "A compact Pi-structure dual band transformer," Progress In Electromagnetics Research, Vol. 88, 121-134, 2008.
    doi:10.2528/PIER08102601

    12. Wu, Y., Y. Liu, and S. Li, "A dual-frequency transformer for complex impedances with two unequal sections," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 2, 77-79, Feb. 2009.
    doi:10.1109/LMWC.2008.2011315

    13. Giannini, F. and L. Scucchia, "A complete class of harmonic matching networks: Synthesis and application," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 3, 612-619, Mar. 2009.
    doi:10.1109/TMTT.2009.2013319

    14. Liu, X., Y. Liu, S. Li, F. Wu, and Y. Wu, "A three-section dual-band transformer for frequency-dependent complex load impedance," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 10, 611-613, Oct. 2009.

    15. Wu, Y., Y. Liu, S. Li, C. Yu, and X. Liu, "A generalized dual-frequency transformer for two arbitrary complex frequency-dependent impedances," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 12, 792-794, Dec. 2009.
    doi:10.1109/LMWC.2009.2034034

    16. Chuang, M.-L., "Dual-band impedance transformer using two-section shunt stubs," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 5, 1257-1263, May 2010.
    doi:10.1109/TMTT.2010.2045560

    17. Nikravan, M. A. and Z. Atlasbaf, "T-section dual-band impedance transformer for frequency-dependent complex impedance loads," Electronics Letters, Vol. 47, No. 9, 551-553, Apr. 28, 2011.
    doi:10.1049/el.2010.7452

    18. Rawat, K. and F. M. Ghannouchi, "Dual-band matching technique based on dual-characteristic impedance transformers for dual-band power amplifiers design," IET Microwaves, Antennas & Propagation, Vol. 5, No. 14, 1720-1729, Nov. 18, 2011.
    doi:10.1049/iet-map.2011.0099

    19. Wu, Y., W. Sun, S.-W. Leung, Y. Diao, and K.-H. Chan, "A novel compact dual-frequency coupled-line transformer with simple analytical design equations for frequency-dependent complex load impedance," Progress In Electromagnetics Research, Vol. 134, 47-62, 2013.
    doi:10.2528/PIER12101906

    20. Li, S., B. Tang, Y. Liu, S. Li, C. Yu, and Y.Wu, "Miniaturized dual-band matching technique based on coupled-line transformer for dual-band power amplifiers design," Progress In Electromagnetics Research, Vol. 131, 195-210, 2012.
    doi:10.2528/PIER12072004

    21. Wu, Y., Y. Liu, S. Li, and C. Yu, "New coupled-line dual-band dc-block transformer for arbitrary complex frequency-dependent load impedance," Wiley Microwave & Optical Technology Letters, Vol. 54, No. 1, 139-142, Jan. 2012.
    doi:10.1002/mop.26480

    22. Moon, B.-T. and N.-H. Myung, "A dual-band impedance transforming technique with lumped elements for frequency-dependent complex loads," Progress In Electromagnetics Research, Vol. 136, 123-139, 2013.
    doi:10.2528/PIER12111811

    23. Maktoomi, M. A., M. S. Hashmi, and F. M. Ghannouchi, "A T-section dual-band matching network for frequency-dependent complex loads incorporating coupled line with DC-block property suitable for dual-band transistor amplifiers," Progress In Electromagnetics Research C, Vol. 54, 75-84, 2014.
    doi:10.2528/PIERC14090403

    24. Wang, X. H., L. Zhang, Y. Xu, Y. F. Bai, C. Liu, and X.-W. Shi, "A tri-band impedance transformer using stubbed coupling line," Progress In Electromagnetics Research, Vol. 141, 33-45, 2013.
    doi:10.2528/PIER13042907

    25. Bai, Y.-F., X.-H. Wang, C.-J. Gao, Q.-L. Huang, and X.-W. Shi, "Design of compact quad-frequency impedance transformer using two-section coupled line," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2417-2423, Aug. 2012.
    doi:10.1109/TMTT.2012.2202682